Skip to main content
Log in

Enantioselective hydrogen transfer hydrogenation on rhodium colloid systems with optically active stabilizers

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen transfer hydrogenation of acetophenone and methyl benzoylformate with 2-propanol was studied on colloidal systems obtained by reduction of rhodium complexes in the presence of optically active compounds: chiral diamines, quaternary salt (4S,5S)-(–)-N 1,N 4-dibenzylene-2,3-dihydroxy-N 1,N 1,N 4,N 4-tetramethylbutane-1,4-diammonium dichloride and (8S,9R)-(–)-cinchonidine. The increase in the molar ratio modifier/Rh leads to the increase in the enantioneric excess (ee) of the reaction products. The largest ee [43.8% of (R)-1-phenylethanol and 58.2% of methyl ester of (R)-mandelic acid] were achieved for the ratios (8S,9R)-(–)-cinchonadine: Rh = 9: 1 and 3: 1, respectively. The catalyst was characterized by the high-resolution transmission electron microscopy, X-ray diffraction analysis, and thermal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ott, L.S. and Finke, R.G., Coord. Chem. Rev., 2007, vol. 251, nos. 9–10, p. 1075. DOI: 10.1016/jccr.2006.08.016.

    Article  CAS  Google Scholar 

  2. Widegren, J.A. and Finke, R.G., J. Mol. Catal. (A), 2003, vol. 191, no. 2, p. 187. DOI: 10.1016/S1381-1169 (02)00125-5.

    Article  CAS  Google Scholar 

  3. Yan, N., Xiao, C., and Kou, Y., Coord. Chem. Rev., 2010, vol. 254, nos. 9–10, p. 1179. DOI: 10.1016/jccr.2010.02.015.

    Article  CAS  Google Scholar 

  4. Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control, Corain, B., Schmid, G., and Toshima, N., Eds., Amsterdam Elsevier, 2008.

  5. Mahmoud, M.A., Narayanan, R., and El-Sayed, M.A., Acc. Chem. Res., 2013, vol. 46, no. 8, p. 1795. DOI: 10.1021/ar3002359.

    Article  CAS  Google Scholar 

  6. Yan, N., Yuan, Y., and Dyson, P., Dalton Trans., 2013, vol. 42, no. 37, p. 13294. DOI: 10.1039/C3DT51180D.

    Article  CAS  Google Scholar 

  7. Chaudhuri, R.G. and Paria, S., Chem. Rev., 2012, vol. 112, no. 4. 2373. DOI: 10.1021/cr100449n.

    Article  Google Scholar 

  8. Cookson, J., Platinum Metals Rev., 2012, vol. 56, no. 2, p. 83. DOI: 10.1595/147106712x632415.

    Article  Google Scholar 

  9. Pushkarev, V.V., Zhu, Z., An, K., Hervier, A., and Somorjai, G.A., Top. Catal., 2012, vol. 55, nos. 19–20, p. 1257. DOI: 10.1007/s11244-012-9915-y.

    Article  CAS  Google Scholar 

  10. Bucher, S., Hormes, J., Modrow, H., Brinkmann, R., Waldöfner, N., Bönnemann, H., Beuermann, L., Krischok, S., Maus-Friedrichs, W., and Kempter, V., Surface Sci., 2002, vol. 497, nos. 1–3, p. 321. DOI: 10.1016/S0039-6028(01)01663-6.

    Article  CAS  Google Scholar 

  11. Zeng, J., Tao, J., Li, W., Grant, J., Wang, P., Zhu, Y., and Xia, Y., Chem. Asian J., 2011, vol. 6, no. 2, p. 376. DOI: 10.1002/asia.201000728.

    Article  CAS  Google Scholar 

  12. Roucoux, A., Schulz, J., and Patin, H., Adv. Synth. Catal., 2003, vol. 345, nos. 1–2, p. 222. DOI: 10.1002/adsc.200390016.

    Article  CAS  Google Scholar 

  13. Park, K.H., Jang, K., and Kim, H.J., Son, S.U., Angew. Chem. Int. Ed., 2007, vol. 46, no. 7. 1152. DOI: 10.1002/anie.200603961.

    Article  CAS  Google Scholar 

  14. Zhou, K.B. and Li, Y.D., Angew. Chem. Int. Ed., 2012, vol. 51, no. 3, p. 602. DOI: 10.1002/anie.201102619.

    Article  CAS  Google Scholar 

  15. Weddle, K.S., Aiken, J.D., and Finke, R.G., J. Am. Chem. Soc., 1998, vol. 120, no. 23, p. 5653. DOI: 10.1021/ja973045h.

    Article  CAS  Google Scholar 

  16. Torsi, L., Farinola, G.M., Marinelli, F., Tanese, M.C., Omar, O.H., Valli, L., Babudri, F., Palmisano, F., Zambonin, P.G., and Naso, F., Nat. Mater., 2008, vol. 7, no. 5, p. 412. DOI: 10.1038/nmat2167.

    Article  CAS  Google Scholar 

  17. Saha, K., Agasti, S.S., Kim Ch., Li, X., and Rotello, V.M., Chem. Rev., 2012, vol. 112, no. 5, p. 2739. DOI: 10.1021/cr2001178.

    Article  CAS  Google Scholar 

  18. Somorjai, G.A. and Li, Y., Top. Catal., 2010, vol. 53, nos. 13–14, p. 832. DOI: 10.1007/s11244-010-9511-y.

    Article  CAS  Google Scholar 

  19. Yasukawa, T., Miyamura, H., and Kobayashi, S., J. Am. Chem. Soc., 2012, vol. 134, no. 41, p. 16963. DOI: 10.1021/ja307913e.

    Article  CAS  Google Scholar 

  20. Stowell, C.A. and Korgel, B.A., Nano Lett., 2005, vol. 5, no. 7, p. 1203. DOI: 10.1021/nl050648f.

    Article  CAS  Google Scholar 

  21. Baiker, A., Catal. Today., 2005, vol. 100, nos. 1–2, p. 159. DOI: 10.1016/jcattod.2004.12.001.

    Article  CAS  Google Scholar 

  22. Nanostructured Catalysts, Scott, S., Ed., New York: Kluwer Academic. Plenum Publishers, 2003, p. 179.

  23. Wells, P.B. and Wilkinson, A.G., Top. Catal., 1998, vol. 5, nos. 1–4, p. 39. DOI: 10.1023/A:1019197802585.

    Article  CAS  Google Scholar 

  24. Barbaro, P., Santo, V.D., and Liguori, F., Dalton Trans., 2010, vol. 39, no. 36, p. 8391. DOI: 10.1039/C002051F.

    Article  CAS  Google Scholar 

  25. Baiker, A., J. Mol. Catal. (A), 2000, vol. 163, no. 1, p. 205. DOI: 10.1016/S1381-1169(00)00387-3.

    Article  CAS  Google Scholar 

  26. Arx, M., Mallat, T., and Baiker, A., Top. Catal., 2002, vol. 19, no. 1, p. 75. DOI: 10.1023/A:1013885300523.

    Article  Google Scholar 

  27. Blaser, H.-U. and Studer, M., Acc. Chem. Res., 2007, vol. 40, no. 12, p. 1348. DOI: 10.1021/ar700088f.

    Article  CAS  Google Scholar 

  28. Blaser, H.-U., Jalett, H.P., Lottenbach, W., and Studer, M., J. Am. Chem. Soc., 2000, vol. 122, no. 51, p. 12675. DOI: 10.1021/ja003259q.

    Article  CAS  Google Scholar 

  29. Burgi, T. and Baiker, A., Acc. Chem. Res., 2004, vol. 37, no. 11, p. 909. DOI: 10.1021/ar040072l.

    Article  Google Scholar 

  30. Margitfalvi, J.L., Tálas, E., and Tfirst, E., Top. Catal., 2006, vol. 39, nos. 1–2, p. 77. DOI: 10.1007/s11244- 006-0040-7.

    Article  CAS  Google Scholar 

  31. Murzin, D.Yu. and Toukoniitty, E., React. Kinet. Catal. Lett., 2007, vol. 90, no. 1, p. 19. DOI: 10.1007/s11144- 007-5004-9.

    Article  CAS  Google Scholar 

  32. Kraynov, A. and Richards, R., Phys. Chem. Chem. Phys., 2007, vol. 9, no. 7, p. 884. DOI: 10.1039/B615470K.

    Article  CAS  Google Scholar 

  33. Studer, M., Blaser, H.-U., and Okafor, V., Chem. Commun., 1998, no. 9, p. 1053. DOI: 10.1039/a801390j.

    Article  Google Scholar 

  34. Gómez, M., Philippot, K., Colliére, V., Lecante, P., Mullera, G., and Chaudret, B., New J. Chem., 2003, vol. 27, no. 1, p. 114. DOI: 10.1039/B206660M.

    Article  Google Scholar 

  35. Sun, Y., Guo, Y., Lu, Q., Meng, X., Xiaohua, W., Guo, Y., Wang, Y., Liu, X., and Zhang, Z., Catal. Lett., 2005, vol. 100, nos. 3–4, p. 213. DOI: 10.1007/s10562-004- 3458-1.

    Article  CAS  Google Scholar 

  36. Xue, P. and Wu, T., Front. Chem. Eng. China, 2007, vol. 1, no. 3, p. 251. DOI: 10.1007/s11705-007-0045-1.

    Article  CAS  Google Scholar 

  37. Roucoux, A., Schulz, J., and Henri, P., Chem. Rev., 2002, vol. 102, no. 10, p. 3757. DOI: 10.1021/cr010350j.

    Article  CAS  Google Scholar 

  38. Jansat, S., Picurelli, D., Pelzer, K., Philippot, K., Gómez, M., Muller, G., Lecante, P., and Chaudret, B., New J. Chem., 2006, vol. 30, no. 1, p. 115. DOI: 10.1039/B509378C.

    Article  CAS  Google Scholar 

  39. Nindakova, L.O., Chipanina, N.N., Turchaninov, V.K., Ustinov, M.V., and Shainyan, B.A., Russ. Chem. Bull., 2005, vol. 54, no. 10, p. 2343. DOI: 10.1007/s11172- 006-0120-7.

    Article  CAS  Google Scholar 

  40. Axet, M.R., Castillon, S., Claver, C., Philippot, K., Lecante, P., and Chaudret, B., Eur. J. Inorg. Chem., 2008, no. 22, p. 3460. DOI: 10.1002/ejic.200800421.

    Article  Google Scholar 

  41. Ewers, T.D., Sra, A.K., Norris, B.C., Cable, R.E., Cheng, C.-H., Shantz, D.F., and Schaak, R.E., Chem. Mater., 2005, vol. 17, no. 3, p. 514. DOI: 10.1021/cm0483792.

    Article  CAS  Google Scholar 

  42. Glavee, G.N., Klabunde, K.J., Sorensen, C.M., and Hadjipanayis, G.C., Langmuir., 1993, vol. 9, no. 1, p. 162. DOI: 10.1021/la00025a034.

    Article  CAS  Google Scholar 

  43. Boström, M., Williams, D.R.M., and Ninham, B.W., Phys. Rev. Lett., 2001, vol. 87, no. 16, p. 168103 DOI: 10.1103/PhysRevLett.87.168103.

    Article  Google Scholar 

  44. Bucher, S., Hormes, J., Modrow, H., Brinkman, R., Waldöfner, N., Bönneman, H., Beuermann, L., Krischok, S., Maus-Friedrichs, W., and Kempter, V., Surf. Sci., 2002, vol. 497, nos. 1–3, p. 321. DOI: 10.1016/S0039-6028(01)01663-6.

    Article  CAS  Google Scholar 

  45. Bonnemann, H., Braun, G., Brijoux, W., Brinkmann, R., Schulze, T.A., Seevogel, K., and Siepen, K., J. Organomet. Chem., 1996, vol. 520, nos. 1–2, p. 143. DOI: 10.1016/0022-328X(96)06273-0.

    Article  Google Scholar 

  46. Metal Nanoparticles: Synthesis, Characterization and Applications, Feldheim, D.L. and Foss, C.A. Jr., Eds., New York: Marcel Dekker, 2002, p. 17.

  47. Szöllösi, G., Cserényi, S., Balázsik, K., Fülöp, F., and Bartók, M., J. Mol. Catal. (A), 2009, vol. 305, nos. 1–2, p. 155. DOI: 10.1016/jmolcata.2009.01.030.

    Article  Google Scholar 

  48. Narayanan, R. and El-Sayed, M., J. Phys. Chem. (B), 2004, vol. 108, no. 25, p. 8572. DOI: 10.1021/jp037169u.

    Article  CAS  Google Scholar 

  49. Gniewek, A. and Trzeciak, A.M., Top. Catal., 2013, vol. 56, no. 13, p. 1239. DOI: 10.1007/s11244-013-0090-6.

    Article  CAS  Google Scholar 

  50. Semagina, N., Renken, A., and Kiwi-Minsker, L., J. Phys. Chem. (C), 2007, vol. 111, no. 37, p. 13933. DOI: 10.1021/jp073944k.

    CAS  Google Scholar 

  51. Murata, K., Ikariya, T., and Noyori, R., J. Org. Chem., 1999, vol. 64, no. 7, p. 2186. DOI: 10.1021/jo990213a.

    Article  CAS  Google Scholar 

  52. Touchard, F., Bernard, M., Fache, F., Delbecq, F., Guiral, V., Sautet, P., and Lemaire, M., J. Organomet. Chem., 1998, vol. 567, nos. 1–2, p. 133. DOI: 10.1016/S0022-328X(98)00675-5.

    Article  CAS  Google Scholar 

  53. Seebach, D., Kalinowski, H.O., Bastini, B., Crass, G., Daum, H., Doerr, H., DuPreez, N.P., and Ehrig, V., Langer, W., Helv. Chim. Acta., 1977, vol. 60, no. 2, p. 301. DOI: 10.1002/hlca., 19770600202.

    Article  CAS  Google Scholar 

  54. Nindakova, L.O., Shainyan, B.A., and Belonogova, L.N., Russ. J. Org. Chem., 2003, vol. 39, no. 10, p. 1484. DOI: 10.1023/B:RUJO.0000010566.99408.65.

    Article  CAS  Google Scholar 

  55. Chambers, W.J., Brasen, W.R., and Hause, C.R., J. Am. Chem. Soc., 1957, vol. 79, no. 4, p. 879. DOI: 10.1021/ja01561a025.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Nindakova.

Additional information

Original Russian Text © L.O. Nindakova, N.М. Badyrova, V.V. Smirnov, V.О. Strakhov, S.S. Kolesnikov, 2016, published in Zhurnal Obshchei Khimii, 2016, Vol. 86, No. 6, pp. 909–918.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nindakova, L.O., Badyrova, N.M., Smirnov, V.V. et al. Enantioselective hydrogen transfer hydrogenation on rhodium colloid systems with optically active stabilizers. Russ J Gen Chem 86, 1240–1249 (2016). https://doi.org/10.1134/S1070363216060049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363216060049

Keywords

Navigation