Skip to main content
Log in

Friction as a Factor Determining the Radiation Efficiency of Fault Slips and the Possibility of Their Initiation: State of the Art

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—A conceptual state of the art review of the research on fault zone resistance to shear is presented. Recent works are analyzed in the context of the approaches formulated in the authors’ presentations made at the Sixth Conference “Triggering Effects in Geosystems.” The analysis of the results obtained in the last two or three decades by different research teams shows that frictional properties of a principal slip zone gouge play a determining role for rupture initiation and propagation. Upgrading the methods for processing weak seismicity data to estimate the “slowness” of microearthquakes confined to a fault zone may provide new approaches in fault zone monitoring to derive indirect information on the material composition of a fault slip zone and, thus, on its seismogenic potential. At present, such methods can be useful in the problems of damage reduction from man-made earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alder, S., Smith, S.A.F., and Scott, J.M., Fault-zone structure and weakening processes in basin-scale reverse faults: The Moonlight Fault Zone, South Island, New Zealand, J. Struct. Geol., 2016, vol. 91, pp. 177–194. https://doi.org/10.1016/j.jsg.2016.09.001

    Article  Google Scholar 

  2. Avouac, J.P., From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle, Annu. Rev. Earth Planet. Sci., 2015, vol. 43, no. 1, pp. 233–271. https://doi.org/ -060614-105302https://doi.org/10.1146/annurev-earth

  3. Barnes, P.M., Wallace, L.M., Saffer, D.M., Bell, R.E., Underwood, M.B., Fagereng, A., LeVay, L.J., et al., Slow slip source characterized by lithological and geometric heterogeneity, Sci. Adv., 2020, vol. 6, no. 13, Aticle ID eaay3314. https://doi.org/10.1126/sciadv.aay3314

  4. Barth, N.C., Boulton, C.J., Carpenter, B.M., Batt, G.E., and Toy, V.G., Slip localization on the southern Alpine fault, New Zealand, Tectonics, 2013, vol. 32, no. 3, pp. 620–640. https://doi.org/10.1002/tect.20041

    Article  Google Scholar 

  5. Batukhtin, I.V., Budkov, A.M., and Kocharyan, G.G., Rupture initiation and arrest on faults with a heterogeneous surface, Mater. V Mezhdunar. konf.Triggernye effekty v geosistemakh” (Proc. Fifth Int. Conf. “Triggering Effects in Geosystems”), Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow, 2019, Moscow: TORUS PRESS, 2019, pp. 137–149.

  6. Bedford, J.D., Faulkner, D.R., and Lapusta, N., Fault rock heterogeneity can produce fault weakness and reduce fault stability, Nat. Commun., 2022, vol. 13, no. 1, Article ID 326. https://doi.org/10.1038/s41467-022-27998-2

    Article  Google Scholar 

  7. Bernshtein, V.A., Mekhanogidroliticheskie protsessy i prochnost' tverdykh tel (Mechanohydrolytic Processes and Strength of Solids), Leningrad: Nauka, 1987.

  8. Besedina, A.N., Kishkina, S.B., Kocharyan, G.G., Kulikov, V.I., and Pavlov, D.V., Weak induced seismicity in the Korobkov iron ore field of the Kursk Magnetic Anomaly, J. Min. Sci., 2020, vol. 56, no. 3, pp. 339–350. https://doi.org/10.15372/FTPRPI20200302

    Article  Google Scholar 

  9. Besedina, A.N., Kishkina, S.B., and Kocharyan, G.G., Source parameters of microseismic swarm events induced by the explosion at the Korobkovskoe iron ore deposit, Izv., Phys. Solid Earth, 2021, vol. 57, no. 3, pp. 348–365. https://doi.org/10.31857/S0002333721030030

    Article  Google Scholar 

  10. Blanpied, M.L., Lockner, D.A., and Byerlee, J.D., Frictional slip of granite at hydrothermal conditions, J. Geophys. Res.: Solid Earth. 1995, vol. 100, no. B7, pp. 13045–13064. https://doi.org/10.1029/95JB00862

    Article  Google Scholar 

  11. Bogomolov, L.M. and Sycheva, N.A., Earthquake predictions in XXI century: prehistory and concepts, precursors and problems, Geosyst. Transition Zones, 2022, vol. 6, no. 3, pp. 164–182. https://doi.org/10.30730/gtrz.2022.6.3.145-164.164-182

    Article  Google Scholar 

  12. Boullier, A.-M., Fault-zone geology: lessons from drilling through the Nojima and Chelungpu faults, Geol. Soc. London, Spec. Publ., 2011, vol. 359, no. 1, pp. 17–37. https://doi.org/10.1144/SP359.2

    Article  Google Scholar 

  13. Boulton, C., Yao, L., Faulkner, D.R., Townend, J., Toy, V.G., Sutherland, R., Ma, S., and Shimamoto, T., High-velocity frictional properties of Alpine fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation, J. Struct. Geol., 2017, vol. 97, pp. 71–92.

    Article  Google Scholar 

  14. Brodsky, E.E., Ma, K.F., Mori, J., et al., Rapid response drilling: past, present, and future, Sci. Drill., 2009, vol. 8, no. 8, pp. 66–74. https://doi.org/10.2204/iodp.sd.8.11.2009

    Article  Google Scholar 

  15. Budkov, A.M. and Kocharyan, G.G., Experimental study of different modes of block sliding along interface. Part 3. Numerical modeling, Phys. Mesomech., 2017, vol. 20, no. 2, pp. 203–208. https://doi.org/10.1134/S1029959917020102

    Article  Google Scholar 

  16. Bürgmann, R., The geophysics, geology and mechanics of slow fault slip, Earth Planet. Sci. Lett., 2018, vol. 495, no. 5, pp. 112–134. https://doi.org/10.1016/j.epsl.2018.04.062

    Article  Google Scholar 

  17. Byerlee, J., Friction of rocks, Pure Appl. Geophys., 1978, vol. 116, pp. 615–626. https://doi.org/10.1007/BF00876528

    Article  Google Scholar 

  18. Carpenter, B.M., Marone, C., and Saffer, D.M., Weakness of the San Andreas Fault revealed by samples from the active fault zone, Nat. Geosci., 2011, vol. 4, no. 4, pp. 251–254. https://doi.org/10.1038/NGEO1089

    Article  Google Scholar 

  19. Carpenter, B.M., Saffer, D.M., and Marone, C., Frictional properties of the active San Andreas Fault at SAFOD: implications for fault strength and slip behavior, J. Geophys. Res.: Solid Earth, 2015, vol. 120, no. 7, pp. 5273–5289. https://doi.org/10.1002/2015JB011963

    Article  Google Scholar 

  20. Chen, X., Madden, A.S., Bickmore, B.R., and Reches, Z., Dynamic weakening by nanoscale smoothing during high-velocity fault slip, Geology, 2013, vol. 41, no. 7, pp. 739–742. https://doi.org/10.1130/G34169.1

    Article  Google Scholar 

  21. Chen, X., Carpenter, B.M. and Reches, Z., Asperity failure control of stick–slip along brittle faults, Pure Appl. Geophys., 2020, vol. 177, pp. 3225–3242. https://doi.org/10.1007/s00024-020-02434-y

    Article  Google Scholar 

  22. Chester, F.M. and Chester, J.S., Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 1998, vol. 295, pp. 199–221. https://doi.org/10.1016/S0040-1951(98)00121-8

    Article  Google Scholar 

  23. Chester, J.S., Chester, F.M., and Kronenberg, A.K., Fracture surface energy of the Punchbowl fault, San Andreas system, Nature, 2005, vol. 437, no. 7055, pp. 133–136.

    Article  Google Scholar 

  24. Chouneta, A., Valléea, M., Causseb, M., and Courboulex, F., Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity, Tectonophysics, 2017, vol. 733, no. B1, pp. 148–158. https://doi.org/10.1016/j.tecto.2017.11.005

    Article  Google Scholar 

  25. Collettini, C. and Holdsworth, R.E., Fault zone weakening processes along low-angle normal faults: insights from the Zuccale fault, Elba, Italy, J. Geol. Soc., 2004, vol. 161, no. 6, pp. 1039–1051. https://doi.org/10.1144/0016-764903-179

    Article  Google Scholar 

  26. Collettini, C., Niemeijer, A., Viti, C., and Marone, C.J., Fault zone fabric and fault weakness, Nature, 2009a, vol. 462, no. 7275, pp. 907–910. https://doi.org/10.1038/nature08585

    Article  Google Scholar 

  27. Collettini, C., Viti, C., Smith, S.A.F., and Holdsworth, R.E., Development of interconnected talc networks and weakening of continental low-angle normal faults, Geology, 2009b, vol. 37, no. 6, pp. 567–570. https://doi.org/10.1130/G25645A.1

    Article  Google Scholar 

  28. Collettini, C., Niemeijer, A., Viti, C., Smith, S.A.F., and Marone, C., Fault structure, frictional properties and mixed-mode fault slip behavior, Earth Planet. Sci. Lett., 2011, vol. 311, nos. 3–4, pp. 316–327. https://doi.org/10.1016/j.epsl.2011.09.020

    Article  Google Scholar 

  29. Collettini, C., Viti, C., Tesei, S., and Mollo, S., Thermal decomposition along natural carbonate faults during earthquakes, Geology, 2013, vol. 41, no. 8, pp. 927–930. https://doi.org/10.1130/G34421.1

    Article  Google Scholar 

  30. Collettini, C., Carpenter, B.M., Viti, C., Cruciani, F., Mollto, S., Tesei, T., Trippetta, F., Valoroso, L., and Chiaraluce, L., Fault structure and slip localization in carbon-ate bearing normal faults: an example from the Northern Apennines of Italy, J. Struct. Geol., 2014, vol. 67, pp. 154–166. https://doi.org/10 .1016 /j.jsg.2014.07.017

  31. Collettini, C., Tesei, T., Scuderi, M.M., Carpenter, B.M., and Viti, C., Beyond Byerlee friction, weak faults and implications for slip behavior, Earth Planet. Sci. Lett., 2019, vol. 519, pp. 245–263. https://doi.org/10.1016/j.epsl.2019.05.011

    Article  Google Scholar 

  32. Collettini, C., Barchi, M.R., De Paola, N., et al., Rock and fault rheology explain differences between on fault and distributed seismicity, Nat. Commun., 2022, vol. 13, no. 1, Article ID 5627. https://doi.org/10.1038/s41467-022-33373-y

    Article  Google Scholar 

  33. Cornelio, C. and Violay, M., Effect of fluid viscosity on earthquake nucleation, Geophys. Res. Lett., 2020, vol. 47, no. 12, Article ID e2020GL087854. https://doi.org/10.1029/2020GL087854

  34. De Barros, L., Daniel, G., Guglielmi, Y., Rivet, D., Caron, H., Payre, X., and Gourlay, M., Fault structure, stress, or pressure control of the seismicity in shale? Insights from a controlled experiment of fluid-induced fault reactivation, J. Geophys. Res.: Solid Earth, 2016, vol. 121, no. 6, pp. 4506–4522. https://doi.org/10.1002/2015JB012633

    Article  Google Scholar 

  35. De Paola, N., Collettini, C., Faulkner, D.R., and Trippetta, F., Fault zone architecture and deformation processes within evaporitic rocks in the upper crust, Tectonics, 2008, vol. 27, no. 4, Article ID TC4017. https://doi.org/10.1029/2007TC002230

    Article  Google Scholar 

  36. De Paola, N., Holdsworth, R.E., Viti, C., Collettini, C., and Bullock, R., Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation?, Earth Planet. Sci. Lett., 2015, vol. 431, pp. 48–58. https://doi.org/10.1016/j.epsl.2015.09.002

    Article  Google Scholar 

  37. Dębski, W., Dynamic stress drop for selected seismic events at Rudna copper mine, Poland, Pure Appl. Geophys., 2018, vol. 175, no. 310, pp. 4165–4181. https://doi.org/10.1007/s00024-018-1926-6

    Article  Google Scholar 

  38. Dieterich, J.H., Modeling of rock friction: 1. Experimental results and constitutive equations, J. Geophys. Res.: Solid Earth, 1979, vol. 84, no. B5, pp. 2161–2168. https://doi.org/10.1029/JB084iB05p02161

    Article  Google Scholar 

  39. Domanski, B. and Gibowicz, S.J., Comparison of source parameters estimated in the frequency and time domains for seismic events at the Rudna copper mine, Poland, Acta Geophys., 2008, vol. 56, no. 2, pp. 324–343. https://doi.org/10.2478/s11600-008-0014-1

    Article  Google Scholar 

  40. Ellsworth, W. and Malin, P., Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves, Geol. Soc., London, Spec. Publ., 2011, vol. 359, no. 1, pp. 39–53.

    Article  Google Scholar 

  41. Evans, J.P. and Chester, F.M., Fluid-rock interaction in faults of the San Andreas system: inferences from San Gabriel fault rock geochemistry and microstructures, J. Geophys. Res.: Solid Earth, 1995, vol. 100, no. B7, pp. 13007–13020.

    Article  Google Scholar 

  42. Fagereng, Å., Frequency size distribution of competent lenses in a block-inmatrix mélange: Imposed length scales of brittle deformation?, J. Geophys. Res.: Solid Earth, 2011, vol. 116, no. B5, Artcle ID B05302. https://doi.org/10.1029/2010JB007775

  43. Fagereng, A. and Cooper, A.F., The metamorphic history of rocks buried, accreted and exhumed in an accretionary prism: an example from the Otago Schist, New Zealand, J. Metamorph. Geol., 2010, vol. 28, no. 9, pp. 935–954. https://doi.org/10.1111/j.1525-1314.2010.00900.x

    Article  Google Scholar 

  44. Fagereng, Å. and Ikari, M.J., Low temperature frictional characteristics of chlorite-epidote-amphibole assemblages: implications for strength and seismic style of retrograde fault zones, J. Geophys. Res.: Solid Earth, 2020, vol. 125, no. 4, Article ID e2020JB019487. https://doi.org/10.1029/2020JB019487

  45. Fagereng, A. and Sibson, R.H., Melange rheology and seismic style, Geology, 2010, vol. 38, no. 8, pp. 751–754. https://doi.org/10.1130/G30868.1

    Article  Google Scholar 

  46. Faulkner, D.R., Lewis, A.C., and Rutter, E.H., On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain, Tectonophysics, 2003, vol. 367, nos. 3–4, pp. 235–251. https://doi.org/10.1016/S0040-1951(03)00134-3

    Article  Google Scholar 

  47. Faulkner, D.R., Mitchell, T.M., Rutter, E.H., and Cembrano, J., On the structure and mechanical properties of large strike-slip faults, Geol. Soc., London, Spec. Publ., 2008, vol. 299, no. 1, pp. 139–150. https://doi.org/10.1144/SP299.9

    Article  Google Scholar 

  48. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J.R., Schlische, W., Shipton, Z.K., Wibberley, C.A.J., and Withjack, M.O., A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 2010, vol. 32, no. 11, pp. 1557–1575.

    Article  Google Scholar 

  49. Filippov, A.E., Popov, V.L., Psakhie, S.G., Ruzhich, V.V., and Shilko, E.V., Converting displacement dynamics into creep in block media, Tech. Phys. Lett., 2006, vol. 32, pp. 545–549. https://doi.org/10.1134/S1063785006060290

    Article  Google Scholar 

  50. Fondriest, M., Smith, S.A.F., Candela, T., Nielsen, S.B., Mair, K., and Di Toro, G., Mirror-like faults and power dissipation during earthquakes, Geology, 2013, vol. 41, no. 11, pp. 1175–1178. https://doi.org/10.1130/G34641.1

    Article  Google Scholar 

  51. Fossum, A.F. and Freund, L.B., Nonuniformly moving shear crack model of a shallow focus earthquake mechanism, J. Geophys. Res., 1975, vol. 80, no. 23, pp. 3343–3347. https://doi.org/10.1029/JB080i023p03343

    Article  Google Scholar 

  52. Geology of the Earthquake Source: A Volume in Honour of Rick Sibson, Fagereng, A., Toy, V.G., and Rowland, J.V., Eds., Geol. Soc. Spec. Publ., vol. 359, London: Geological Society, 2011. https://doi.org/10.1144/SP359

  53. Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., and Elsworth, D., Seismicity triggered by fluid injection-induced aseismic slip, Science, 2015, vol. 348, no. 6240, pp. 1224–1226. https://doi.org/ .aab0476https://doi.org/10.1126/science

  54. Hayman, N.W., Shallow crustal rocks from the Black Mountains detachments, Death Valley, CA, J. Struct. Geol., 2006, vol. 28, no. 10, pp. 1767–1784. https://doi.org/10.1016/j.jsg.2006.06.017

    Article  Google Scholar 

  55. He, C., Yao, W., Wang, Z., and Zhou, Y., Strength and stability of frictional sliding of gabbro gouge at elevated temperatures, Tectonophysics, 2006, vol. 427, nos. 1–4, pp. 217–229. https://doi.org/10.1016/j.tecto.2006.05.023

    Article  Google Scholar 

  56. He, C., Wang, Z., and Yao, W., Frictional sliding of gabbro gouge under hydrothermal conditions, Tectonophysics, 2007, vol. 445, nos. 3–4, pp. 353–362. https://doi.org/10.1016/j.tecto.2007.09.008

    Article  Google Scholar 

  57. Heesakkers, V., Muphy, S., and Reches, Z., Earthquake rupture at focal depth, part I: structure and rupture of the Pretorius fault, TauTona mine, South Africa, Pure Appl. Geophys., 2011, vol. 168, no. 12, pp. 2395–2425. https://doi.org/10.1007/s00024-011-0354-7

    Article  Google Scholar 

  58. Hirose, T., Hamada, Y., Tanikawa, W., Kamiya, N., Yamamoto, Y., Tsuji, T., et al., High fluid-pressure patches beneath the décollement: A potential source of slow earthquakes in the Nankai Trough off Cape Muroto, J. Geophys. Res.: Solid Earth, 2021, vol. 126, no. 6, Article ID e2021JB021831. https://doi.org/10.1029/2021JB021831

  59. Holdsworth, R.E., van Diggelen, E.W.E., Spiers, C.J., de Bresser, J.H.P., Walker, R.J., and Bowen, L., Fault rocks from the SAFOD core samples: implications for weakening at shallow depths along the San Andreas Fault, California, J. Struct. Geol., 2011, vol. 33, no. 2, pp. 132–144. https://doi.org/10.1016/j.jsg.2010.11.010

    Article  Google Scholar 

  60. Ida, Y., Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy, J. Geophys. Res., 1972, vol. 77, no. 20, pp. 3796–3805. https://doi.org/10.1029/JB077I020P03796

    Article  Google Scholar 

  61. Ide, S., Beroza, G.C., Shelly, D.R., and Uchide, T., A scaling law for slow earthquakes, Nature, 2007, vol. 447, no. 7140, pp. 76–79.

    Article  Google Scholar 

  62. Ikari, M.J. and Saffer, D.M., Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary complex, Geochem. Geophys. Geosyst., 2011, vol. 12, no. 4, Article ID Q0AD11. https://doi.org/10.1029/2010gc003442

  63. Ikari, M.J., Saffer, D.M., and Marone, C., Effect of hydration state on the frictional properties of montmorillonite-based fault gouge, J. Geophys. Res.: Solid Earth, 2007, vol. 112, no. B6, Article ID B06423. https://doi.org/10.1029/2006jb004748

    Article  Google Scholar 

  64. Ikari, M.J., Saffer, D.M., and Marone, C., Frictional and hydrologic properties of clay-rich fault gouge, J. Geophys. Res., 2009, vol. 114, no. B5, Article ID B05409. https://doi.org/10.1029 /2008JB006089

  65. Ikari, M.J., Marone, C., and Saffer, D.M., On the relation between fault strength and frictional stability, Geology, 2010, vol. 39, no. 1, pp. 83–86. https://doi.org/10.1130/G31416.1

    Article  Google Scholar 

  66. Ikari, M.J., Marone, C., Saffer, D.M., and Kopf, A.J., Slip weakening as a mechanism for slow earthquakes, Nat. Geosci., 2013, vol. 6, no. 6, pp. 468–472. https://doi.org/10.1038/NGEO18198

    Article  Google Scholar 

  67. Ikari, M.J., Kameda, J., Saffer, D.M., and Kopf, A.J., Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake, Earth Planet. Sci. Lett., 2015, vol. 412, pp. 35–41. https://doi.org/10.1016/j.epsl.2014.12.014

    Article  Google Scholar 

  68. Im, K., Saffer, D., Marone, C. and Avouac, J.P., Slip-rate-dependent friction as a universal mechanism for slow slip events, Nat. Geosci., 2020, vol. 13, no. 10, pp. 705–710. https://doi.org/10.1038/s41561-020-0627-9

    Article  Google Scholar 

  69. Imanishi, K., Takeo, M., Ellsworth, W.L., Ito, H., Matsuzawa, T., Kuwahara, Y., Iio, Y., Horiuchi, S., and Ohmi, S., Source parameters and rupture velocities of microearthquakes in western Nagano, Japan, determined using stopping phases, Bull. Seismol. Soc. Am., 2004, vol. 94, no. 5, pp. 1762–1780. https://doi.org/10.1785/012003085

    Article  Google Scholar 

  70. Janku-Capova, L., Sutherland, R., Townend, J., Doan, M.L., Massiot, C., Coussens, J., and Celerier, B., Fluid flux in fractured rock of the Alpine fault hanging-wall determined from temperature logs in the DFDP-2B borehole, New Zealand, Geochem. Geophys. Geosyst., 2018, vol. 19, no. 8, pp. 2631–2646. https://doi.org/10.1029/2017GC007317

    Article  Google Scholar 

  71. Jefferies, S.P., Holdsworth, R.E., Wibberley, C.A.J., Shimamoto, T., Spiers, C.J., Niemeijer, A.R., and Lloyd, G.E., The nature and importance of phyllonite development in crustal-scale fault cores: an example from the Median Tectonic Line, Japan, J. Struct. Geol., 2006, vol. 28, no. 2, pp. 220–235. https://doi.org/10.1016/j.jsg.2005.10.008

    Article  Google Scholar 

  72. Jeppson, T.N., Bradbury, K.K., and Evans, J.P., Geophysical properties within the San Andreas fault zone at the San Andreas fault observatory at depth and their relationships to rock properties and fault zone structure, J. Geophys. Res., 2010, vol. 115, no. B12, Article ID B12423. https://doi.org/10.1029/2010JB007563

    Article  Google Scholar 

  73. Ji, Y., Hofmann, H., Duan, K., and Zang, A., Laboratory experiments on fault behavior towards better understanding of injection-induced seismicity in geoenergy systems, Earth-Sci. Rev., 2022, vol. 226, no. 1, Article ID 103916. https://doi.org/10.1016/j.earscirev.2021.103916

    Article  Google Scholar 

  74. Kaduri, M., Gratier, J.P., Renard, F., Çakir, Z., and Lasserre, C., The implications of fault zone transformation on aseismic creep: example of the North Anatolian Fault, Turkey, J. Geophys. Res.: Solid Earth, 2017, vol. 122, no. 6, pp. 4208–4236. https://doi.org/10.1002/2016JB013803

    Article  Google Scholar 

  75. Kameda, J., Yamaguchi, A., Saito, S., Sakuma, H., Kawamura, K., and Kimura, G., A new source of water in seismogenic subduction zones, Geophys. Res. Lett., 2011, vol. 38, no. 22, Article ID L22306. https://doi.org/10.1029/2011gl048883

    Article  Google Scholar 

  76. Kanamori, H. and Brodsky, E.E., The physics of earthquakes, Rep. Prog. Phys., 2004, vol. 67, no. 8, pp. 1429–1496.

    Article  Google Scholar 

  77. Kanamori, H. and Hauksson, E., A slow earthquake in the Santa Maria basin, California, Bull. Seismol. Soc. Am., 1992, vol. 82, no. 5, pp. 2087–2096. https://doi.org/10.1785/BSSA0820052087

    Article  Google Scholar 

  78. Kanamori, H. and Stewart, G.S., Seismological aspects of the Guatemala earthquake of February 4, 1976, J. Geophys. Res.: Solid Earth, 1978, vol. 83, no. B7, pp. 3427–3434. https://doi.org/10.1029/JB083iB07p03427

    Article  Google Scholar 

  79. Kang, J.Q., Zhu, J.B., and Zhao, J., A review of mechanisms of induced earthquakes: from a view of rock mechanics, Geomech. Geophys. Geo-Energy Geo-Resour., 2019, vol. 5, no. 2, pp. 171–196. https://doi.org/10.1007/s40948-018-00102-z

    Article  Google Scholar 

  80. Kawai, K., Sakuma, H., Katayama, I., and Tamura, K., Frictional characteristics of single and polycrystalline muscovite and influence of fluid chemistry, J. Geophys. Res.: Solid Earth, 2015, vol. 120, no. 9, pp. 6209–6218. https://doi.org/10.1002/2015JB012286

    Article  Google Scholar 

  81. Kilgore, B., Blanpied, M.L., and Dieterich, J.H., Velocity dependent friction of granite over a wide range of conditions, Geophys. Res. Lett., 1993, vol. 20, no. 10, pp. 903–906. https://doi.org/10.1029/93GL00368

    Article  Google Scholar 

  82. Kimura, G., Yamaguchi, A., Hojo, M., Kitamura, Y., Kameda, J., Ujiie, K., Hamada, Y., Hamahashi, M., and Hina, S., Tectonic mélange as fault rock of subduction plate boundary, Tectonophysics, 2012, vols. 568–569, pp. 25–38. doi 10.1016 /j.tecto.2011.08.025

  83. Kissin, I.G., Flyuidy v zemnoi kore. Geofizicheskie i tektonicheskie aspekty (Fluids in the Earth’s Crust: Geophysical and Tectonic Aspects, Moscow: Nauka, 2015. Kocharyan, G.G., Geomekhanika razlomov (Geomechanics of Faults), Moscow: GEOS, 2016.

  84. Kocharyan, G.G., Nucleation and evolution of sliding in continental fault zones under the action of natural and man-made factors: A state-of-the-art review, Izv., Phys. Solid Earth, 2021, vol. 57, no. 4, pp. 439–473. https://doi.org/10.31857/S0002333721040062

    Article  Google Scholar 

  85. Kocharyan, G.G. and Batukhtin, I.V., Laboratory studies of a fault slip process as a physical basis for a new approach to short-term earthquake prediction, Geodin. Tektonofiz., 2018, vol. 9, no. 3, pp. 671–691. https://doi.org/10.5800/GT-2018-9-3-0367

    Article  Google Scholar 

  86. Kocharyan, G.G. and Kishkina, S.B., The physical mesomechanics of the earthquake source, Phys. Mesomech., 2021, vol. 24, no. 4, pp. 343–356. https://doi.org/10.1134/s1029959921040019

    Article  Google Scholar 

  87. Kocharyan, G.G. and Novikov, V.A., Experimental study of different modes of block sliding along interface. Part 1. Laboratory experiments, Phys. Mesomech., 2016, vol. 19, no. 2, pp. 189–199. https://doi.org/10.1134/S1029959916020120

    Article  Google Scholar 

  88. Kocharyan, G.G. and Ostapchuk, A.A., The influence of viscosity of thin fluid films on the frictional interaction mechanism of rock blocks, Dokl. Earth Sci., 2015, vol. 463, no. 1, pp. 757–759. https://doi.org/10.7868/S0869565215210148

    Article  Google Scholar 

  89. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Deformation Dynamics of Hard Rock Block Masses), Moscow: Akademkniga, 2003.

  90. Kocharyan, G.G., Novikov, V.A., Ostapchuk, A.A., and Pavlov, D.V., A study of different fault slip modes governed by the gouge material composition in laboratory experiments, Geophys. J. Int., 2017, vol. 208, no. 1, pp. 521–528. https://doi.org/10.1093/gji/ggw409

    Article  Google Scholar 

  91. Kocharyan, G.G., Budkov, A.M., and Kishkina, S.B., Effect of slip zone structure on earthquake rupture velocity, Phys. Mesomech., 2022, vol. 25, no. 6, pp. 549–556. https://doi.org/10.55652/1683-805X_2022_25_4_84

    Article  Google Scholar 

  92. Kostrov, B.V., Mekhanika ochaga tektonicheskogo zemletryaseniya (Source Mechanics of a Tectonic Earthquake), Moscow: Nauka, 1975.

  93. Kozyrev, A.A., Batugin, A.S., and Zhukova, S.A., Influence of water content on seismic activity of rock mass in apatite mining in Khibiny, Gorn. Zh., 2021, no. 1, pp. 31–36. https://doi.org/10.17580/gzh.2021.01.06

  94. Kuo, L.W., Li, H., Smith, S.A.F., Di Toro, G., Suppe, J., Song, S.R., Nielsen, S., Sheu, H.S., and Si, J., Gouge graphitization and dynamic fault weakening during the 2008 Mw = 7.9 Wenchuan earthquake, Geology, 2014, vol. 42, no. 1, pp. 47–50. https://doi.org/10.1130/G34862.1

    Article  Google Scholar 

  95. Kuo, L.W., Huang, J.R., Fang, J.N., Si, J., Li, H., and Song, S.R., Carbonaceous materials in the fault zone of the Longmenshan fault belt: 1. Signatures within the deep Wenchuan earthquake fault zone and their implications, Minerals, 2018, vol. 8, no. 9, pp. 385–398. https://doi.org/10.3390/min8090385

    Article  Google Scholar 

  96. Kuzmin, Yu.O., Induced deformations of fault zones, Izv. Phys. Solid Earth, 2019, vol. 55, no. 5, pp. 753–765.

    Article  Google Scholar 

  97. Kwiatek, G., Plenkers, K., and Dresen, G., Source parameters of picoseismicity recorded at Mponeng deep gold mine, South Africa: implications for scaling relations, Bull. Seismol. Soc. Am., 2011, vol. 101, no. 6, pp. 2592–2608. https://doi.org/10.1785/0120110094

    Article  Google Scholar 

  98. Lachenbruch, A.H. and Sass, J.H., The stress heat-flow paradox and thermal results from Cajon Pass, Geophys. Res. Lett., 1988, vol. 15, no. 9, pp. 981–984. https://doi.org/10.1029/gl015i009p00981

    Article  Google Scholar 

  99. Lacroix, B., Buatier, M., Labaume, P., Travè, A., Dubois, M., Charpentier, D., Ventalon, S., and Convert-Gaubier, D., Microtectonic and geochemical characterization of thrusting in a foreland basin: Example of the South-Pyrenean orogenic wedge (Spain), J. Struct. Geol., 2011, vol. 33, no. 9, pp. 1359–1377. https://doi.org/10.1016/j.jsg.2011.06

  100. Lacroix, B., Tesei, T., Oliot, E., Lahfid, A., and Collettini, C., Early weakening processes inside thrust fault, Tectonics, 2015, vol. 34, no. 7, pp. 1396–1411. https://doi.org/10.1002/2014TC003716

    Article  Google Scholar 

  101. Leah, H., Fagereng, Å., Groome, N., Buchs, D., Eijsink, A., and Niemeijer, A., Heterogeneous subgreenschist deformation in an exhumed sediment-poor Mélange, J. Geophys. Res.: Solid Earth, 2022, vol. 127, no. 8, Article ID e2022JB024353. https://doi.org/10.1029/2022JB024353

  102. Lin, A., Thermal pressurization and fluidization of pulverized cataclastic rocks formed in seismogenic fault zones, J. Struct. Geol., 2019, vol. 125, no. B10, pp. 278–284. https://doi.org/10.1016/j.jsg.2017.12.010

    Article  Google Scholar 

  103. Lin, A. and Nishiwaki, T., Repeated seismic slipping events recorded in a fault gouge zone: Evidence from the Nojima fault drill holes, SW Japan, Geophys. Res. Lett., 2019, vol. 46, no. 3, pp. 1276–1283. https://doi.org/10.1029/2019GL081927

    Article  Google Scholar 

  104. Lin, A., Maruyama, T., and Kobayashi, K., Tectonic implications of damage zone-related fault-fracture networks revealed in drill core through the Nojima fault, Japan, Tectonophysics, 2007, vol. 443, nos. 3–4, pp. 161–173. https://doi.org/10.1016/j.tecto.2007.01.011

    Article  Google Scholar 

  105. Lockner, D.A., Tanaka, H., Ito, H., Ikeda, R., Omura, K., and Naka, H., Geometry of the Nojima fault at Nojima-Hirabayashi, Japan—I. A simple damage structure inferred from borehole core permeability, Pure Appl. Geophys., 2009, vol. 166, pp. 1649–1667. https://doi.org/10.1007/s00024-009-0515-0

    Article  Google Scholar 

  106. Lockner, D.A., Morrow, C., Moore, D., and Hickman, S., Low strength of deep San Andreas fault gouge from SAFOD core, Nature, 2011, vol. 472, no. 7341, pp. 82–85. https://doi.org/10.1038/nature09927

    Article  Google Scholar 

  107. Ma, K.-F., Brodsky, E.E., Mori, J., Ji, C., Song, T.-R.A., and Kanamori, H., Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake (M w7.6), Geophys. Res. Lett., 2003, vol. 30, no. 5, Article ID 1244. https://doi.org/10.1029/2002GL015380

    Article  Google Scholar 

  108. Manatschal, G., Fluid-and reaction-assisted low-angle normal faulting: evidence from rift-related brittle fault rocks in the Alps (Err nappe, eastern Switzerland), J. Struct. Geol., 1999, vol. 21, no. 7, pp. 777–793. https://doi.org/10.1016/S0191-8141(99)00069-3

    Article  Google Scholar 

  109. Marone, C., Raleigh, C.B., and Scholz, C.H., Frictional behavior and constitutive modeling of simulated fault gouge, J. Geophys. Res.: Solid Earth, 1990, vol. 95, no. B5, pp. 7007–7025. https://doi.org/10.1029/JB095iB05p07007

    Article  Google Scholar 

  110. Marti, S., Stünitz, H., Heilbronner, R., Plümper, O., and Drury, M., Experimental investigation of the brittle-viscous transition in mafic rocks—Interplay between fracturing, reaction, and viscous deformation, J. Struct. Geol., 2017, vol. 105, pp. 62–79. https://doi.org/10.1016/j.jsg.2017.10.011

    Article  Google Scholar 

  111. Matveev, M.A., Smulskaya, A.I., and Morozov, Yu.A., Features of frictional melting of rocks and melt crystallization in a seismic process: case study of pseudotachylites of the Ladoga region, Izv., Phys. Solid Earth, 2022, vol. 58, no. 6, pp. 902–928. https://doi.org/10.31857/S0002333722060096

    Article  Google Scholar 

  112. McNeil, L.C., Shillington, D.J., Garter, G.D.O., et al., Corinth Active Rift Development, Proc. Int. Ocean Discovery Program, vol. 381, College Station: Int. Ocean Discovery Program, 2019. https://doi.org/10.14379/iodp.proc.381.2019

    Book  Google Scholar 

  113. Meneghini, F. and Moore, J.C., Deformation and hydrofracture in a subduction thrust at seismogenic depths: the Rodeo Cove thrust zone, Marin Headlands, California, Geol. Soc. Am. Bull., 2008, vol. 119, nos. 1–2, pp. 174–183. https://doi.org/10.1130/B25807.1

    Article  Google Scholar 

  114. Mirzoev, K.M., Nikolaev, A.V., Lukk, A.A., and Yunga, S.L., Induced seismicity and the possibilities of controlled relaxation of tectonic stresses in the Earth’s crust, Izv., Phys. Solid Earth, 2009, vol. 45, no. 10, pp. 885–904.

    Article  Google Scholar 

  115. Moore, D.E. and Lockner, D.A., Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals, J. Geophys. Res.: Solid Earth, 2004, vol. 109, no. B3, Article ID B03401. https://doi.org/10.1029/2003JB002582

    Article  Google Scholar 

  116. Moore, D.E. and Lockner, D.A., Frictional strengths of talc-serpentinite and talc-quartz mixtures, J. Geophys. Res.: Solid Earth, 2011, vol. 116, no. B1, Article ID B01403. https://doi.org/10.1029/2010JB07881

    Article  Google Scholar 

  117. Moore, D.E. and Lockner, D.A., Chemical controls on fault behavior: Weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system, J. Geophys. Res.: Solid Earth, 2013, vol. 118, no. 5, pp. 2558–2570. https://doi.org/10.1002/jgrb.50140

    Article  Google Scholar 

  118. Moore, D.E. and Lockner, D.A., Weakening of peridotite sheared at hydrothermal conditions, Geochem. Geophys. Geosyst., 2021, vol. 22, no. 11, Article ID e2021GC010005. https://doi.org/10.1029/2021GC010005

  119. Moore, D.E., Lockner, D.A., and Hickman, S., Hydrothermal frictional strengths of rock and mineral samples relevant to the creeping section of the San Andreas Fault, J. Struct. Geol., 2016, vol. 89, pp. 153–167. https://doi.org/10.1016/j.jsg.2016.06.005

    Article  Google Scholar 

  120. Morley, C.K., von Hake, C., Hansberry, R.L., Collins, A.S., Kanitpanyacharoen, W., and King, R., Review of major shale-dominated detachment and thrust charac-teristics in the diagenetic zone: Part I, meso-and macro-scopic scale, Earth-Sci. Rev., 2017, vol. 173, no. 17, pp. 168–228. doi. org /10 .1016/j. earscirev.2017.07.019

  121. Morozov, Yu.A., Bukalov, S.S., and Leites, L.A., Mechanochemical transformation of shungite in the dynamic slip zone, Geophys. Res., 2016, vol. 17, no. 2, pp. 5–18.

    Google Scholar 

  122. Morozov, Yu.A., Sevastianov, V.S., Yurchenko, A.Yu., and Kuznetsova, O.V., Carbonization of carbonates and fractionation of stable carbon isotopes in a dynamic slip zone, Geochem. Int., 2020, vol. 58, no. 9, pp. 981–993. https://doi.org/10.31857/S001675252009006X

    Article  Google Scholar 

  123. Morozova, K.G. and Ostapchuk, A.A., Relationship between the state of a shear crack in a granulated material and acoustic emission and deformation data, Acoust. Phys., 2022, vol. 68, no. 5, pp. 496–501. https://doi.org/10.31857/S0320791922050082

    Article  Google Scholar 

  124. Niemeijer, A.R. and Collettini, C., Frictional properties of a low-angle normal fault under in situ conditions: thermally-activated velocity weakening, Pure Appl. Geophys., 2014, vol. 171, no. 10, pp. 2641–2664. https://doi.org/10.1007/s00024-013-0759-6

    Article  Google Scholar 

  125. Okamoto, A.S., Verberne, B.A., Niemeijer, A.R., Takahashi, M., Shimizu, I., Ueda, T., and Spiers, C.J., Frictional properties of simulated chlorite gouge at hydrothermal conditions: Implications for subduction megathrusts, J. Geophys. Res.: Solid Earth, 2019, vol. 124, no. 5, pp. 4545–4565. https://doi.org/10.1029/2018JB017205

    Article  Google Scholar 

  126. Okamoto, A., Niemeijer, A.R., Takeshita, T., Verberne, B.A., and Spiers, C.J., Frictional properties of actinolite-chlorite gouge at hydrothermal conditions, Tectonophysics, 2020, vol. 779, Article ID 228377. https://doi.org/10.1016/j.tecto.2020.228377

    Article  Google Scholar 

  127. Okazaki, K., Katayama, I., and Takahashi, M., Effect of pore fluid pressure on the frictional strength of antigorite serpentinite, Tectonophysics, 2013, vol. 583, pp. 49–53. https://doi.org/10.1016/j.tecto.2012.10.017

    Article  Google Scholar 

  128. Ostapchuk, A.A., Kocharyan, G.G., Morozova, K.G., Pavlov, D.V., and Gridin, G.A., Peculiarities of dynamic slip nucleation in a thin granular layer, Izv., Phys. Solid Earth, 2021a, vol. 57, no. 5, pp. 659–670. https://doi.org/10.31857/S0002333721050136

    Article  Google Scholar 

  129. Ostapchuk, A.A., Morozova, K.G., Markov, V.K., Pavlov, D.V., and Popov, M., Acoustic emission reveals multiple slip modes on a frictional fault, Front. Earth Sci., 2021b, vol. 9, Article ID 657487. https://doi.org/10.3389/feart.2021.657487

    Article  Google Scholar 

  130. Ostapchuk, A.A., Polyatykin, V.V., Popov, M.F., and Kocharyan, G.G., Seismogenic patches in a tectonic fault interface, Front. Earth Sci., 2022, vol. 10, Article ID 904814. https://doi.org/10.3389/feart.2022.904814

    Article  Google Scholar 

  131. Pec, M., Stünitz, H., Heilbronner, R., and Drury, M., Semi-brittle flow of granitoid fault rocks in experiments, J. Geophys. Res.: Solid Earth, 2016, vol. 121, no. 3, pp. 1677–1705. https://doi.org/10.1002/2015JB012513

    Article  Google Scholar 

  132. Peng, Z. and Gomberg, J., An integrated perspective of the continuum between earthquakes and slow-slip phenomena, Nat. Geosci., 2010, vol. 3, pp. 599–607. https://doi.org/10.1038/ngeo940

    Article  Google Scholar 

  133. Perrin, C., Manighetti, I., Ampuero, J.P., Cappa, F., and Gaudemer, Y., Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth, J. Geophys. Res., 2016, vol. 121, no. 5, pp. 3666–3685.

    Article  Google Scholar 

  134. Proctor, B., Mitchell, T.M., Hirth, G., Goldsby, D., Zorzi, F., and Di Toro, G., Dynamic weakening of serpentinite gouges and bare-surfaces at seismic slip rates, J. Geophys. Res., 2014, vol. 119, no. 11, pp. 8107–8131. https://doi.org/10.1002/2014JB011057

    Article  Google Scholar 

  135. Proctor, B., Lockner, D.A., Kilgore, B.D., Mitchell, T.M., and Beeler, N.M., Direct evidence for fluid pressure, dilatancy, and compaction affecting slip in isolated faults, Geophys. Res. Lett., 2020, vol. 47, no. 16, Article ID e2019GL086767. https://doi.org/10.1029/2019GL086767

  136. Rabinowitz, H.S., Savage, H.M., Skarbek, R.M., Ikari, M.J., Carpenter, B.M., and Collettini, C., Frictional behavior of input sediments to the Hikurangi trench, New Zealand, Geochem. Geophys. Geosyst., 2018, vol. 19, no. 9, pp. 2973–2990. https://doi.org/10.1029/2018GC007633

    Article  Google Scholar 

  137. Renard, F. and Ortoleva, P., Water films at grain-grain contacts: Debye-Hueckel, osmotic model of stress, salinity, and mineralogy dependence, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 10, pp. 1963–1970. https://doi.org/10.1016/S0016-7037(97)00036-7

    Article  Google Scholar 

  138. Rice, J.R., Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault, Ch. 20 of Fault Mechanics and Transport Properties of Rocks, Evans, B. and Wong, T.-F., Eds., New York: Academic Press, 1992, pp. 475–504.

  139. Rice, J.R. and Ruina, A.L., Stability of steady frictional slipping, J. Appl. Mech., 1983, vol. 50, no. 2, pp. 343–349. https://doi.org/10.1115/1.3167042

    Article  Google Scholar 

  140. Rodkin, M.V. and Rundkvist, D.V., Geoflyuidogeodinamika. Prilozhenie k seismologii, tektonike, protsessam rudo- i neftegeneza (Geofluidogeodynamics: Application to Seismology, Tectonics, and Ore and Oil Genesis Processes), Dolgoprudnyi: Intellekt, 2017.

  141. Rowe, C.D., Fagereng, Å., Miller, J.A., and Mapani, B., Signature of coseismic decarbonation in dolomitic fault rocks of the Naukluft Thrust, Namibia, Earth Planet. Sci. Lett., 2012, vols. 333–334. pp. 200–210. https://doi.org/10.1016/j.epsl.2012.04.030

    Article  Google Scholar 

  142. Rowe, C.D., Moore, C.J., and Remitti, F., The thickness of subduction plate boundary faults from the seafloor into the seismogenic zone, Geology, 2013, vol. 41, no. 9, pp. 991–994. https://doi.org/10.1130/G34556.1

    Article  Google Scholar 

  143. Ruggieri, R., Scuderi, M.M., Trippetta, F., Tinti, E., Brignoli, M., Mantica, S., Petroselli, S., Osculati, L., Volontè, G., and Collettini, C., The role of shale content and pore-water saturation on frictional properties of simulated carbonate faults, Tectonophysics, 2021, vol. 807, no. 1, Article ID 228811. https://doi.org/10.1016/j.tecto.2021.228811

    Article  Google Scholar 

  144. Ruina, A., Slip instability and state variable laws, J. Geophys. Res., 1983, vol. 88, no. B12, pp. 10,359–10,370. https://doi.org/10.1029/JB088iB12p10359

    Article  Google Scholar 

  145. Rutter, E.H., Faulkner, D.R., and Burgess, R., Structure and geological history of the Carboneras Fault Zone, SE Spain: part of a stretching transform fault system, J. Struct. Geol., 2012, vol. 45, no. B5, pp. 68–86. https://doi.org/10.1016/j.jsg.2012.08.009

    Article  Google Scholar 

  146. Ruzhich, V.V., Seismotektonicheskaya destruktsiya v zemnoi kore Baykal’skoi riftovoi zony (Seismotectonic Destruction in the Earth’s Crust of the Baikal Rift Zone), Novosibirsk: SO RAN, 1997.

  147. Ruzhich, V.V. and Kocharyan, G.G., On the structure and formation of earthquake sources in the faults located in the subsurface and deep levels of the crust. Part I: Subsurface level, Geodin. Tektonofiz., 2017, vol. 8, no. 4, pp. 1021–1034. https://doi.org/10.5800/GT-2017-8-4-0330

    Article  Google Scholar 

  148. Ruzhich, V.V., Kocharyan, G.G., Savelieva, V.B., and Travin, A.V., On the structure and formation of earthquake sources in the faults located in the subsurface and deep levels of the crust. Part II: Deep level, Geodinam. Tektonofiz., 2018, vol. 9, no. 3, pp. 1039–1061. https://doi.org/10.5800/GT-2018-9-3-0383

    Article  Google Scholar 

  149. Ruzhich, V.V., Vakhromeev, A.G., Levina, E.A., Sverkunov, S.A., and Shilko, E.V., Seismic activity control in tectonic fault zones using vibrations and deep well fluid injection, Fiz. Mezomekh., 2020, vol. 23, no. 3, pp. 55–69.

    Google Scholar 

  150. Ruzhich, V.V., Vakhromeev, A.G., Sverkunov, S.A., Ivanishin, V.M., Akchurin, R.H., and Levina, E.A., Study, forecast and controlled seismic hazard reduction in the identified segments of the main faults by cyclic fluid injection through deep multi-branch directional wells, Geodin. Tektonofiz., 2022, vol. 13, no. 3, Article ID 12. https://doi.org/10.5800/GT-2022-13-3-0637

    Article  Google Scholar 

  151. Sagy, A., Brodsky, E.E., and Axen, G.J., Evolution of fault-surface roughness with slip, Geology, 2007, vol. 35, no. 3, pp. 283–286.

    Article  Google Scholar 

  152. Savage, H.M., Kirkpatrick, J.D., Mori, J.J., Brodsky, E.E., Ellsworth, W.L., Carpenter, B.M., Chen, X., Cappa, F., and Kano, Y., Scientific Exploration of Induced Seismicity and Stress (SEISMS), Sci. Drill., 2017, vol. 23, pp. 57–63. https://doi.org/10.5194/sd-23-57-2017

    Article  Google Scholar 

  153. Schleicher, A.M., van der Pluijm, B., and Warr, L.N., Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California, Geology, 2010, vol. 38, no. 7, pp. 667–670. https://doi.org/10.1130/G31091.1

    Article  Google Scholar 

  154. Schoenball, M. and Ellsworth, W.L., A systematic assessment of the spatio-temporal evolution of fault activation through induced seismicity in Oklahoma and southern Kansas, J. Geophys. Res.: Solid Earth, 2017, vol. 122, no. 12, pp. 10,189–10,206. https://doi.org/10.1002/2017JB014850

    Article  Google Scholar 

  155. Scholz, C.H., The Mechanics of Earthquakes and Faulting, 3rd ed., Cambridge: Cambridge Univ. Press, 2019.

    Book  Google Scholar 

  156. Scuderi, M.M. and Collettini, C., The role of fluid pressure in induced vs. triggered seismicity: Insights from rock deformation experiments on carbonates, Sci. Rep., 2016, vol. 6, no. 1, Article ID 24852. https://doi.org/10.1038/srep24852

    Article  Google Scholar 

  157. Segall, P., Rubin, A.M., Bradley, A.M., and Rice, J.R., Dilatant strengthening as a mechanism for slow slip events, J. Geophys. Res.: Solid Earth, 2010, vol. 115, no. B12, Article ID B12305. https://doi.org/10. 1029/2010jb007449

  158. Seminskii, K.Zh., Vnutrennyaya struktura kontinental’nykh razlomnykh zon. Tektonofizicheskii aspekt (Internal Structure of Continental Fault Zones: Tectonophysical Aspect), Novosibirsk: SO RAN, Geo, 2003.

  159. Sherman, S.I., Seismicheskii protsess i prognoz zemletryasenii: tektonofizicheskaya kontseptsiya (Seismic Process and Earthquake Forecasting: Tectonophysical Conception), Novosibirsk: Geo, 2014.

  160. Shimamoto, T. and Logan, J.M., Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: nonclay gouges, J. Geophys. Res., 1981, vol. 86, no. B4, pp. 2902–2914. https://doi.org/10.1029/JB086IB04P02902

    Article  Google Scholar 

  161. Sibson, R.H., Fault rocks and fault mechanisms, J. Geol. Soc., 1977, vol. 133, pp. 191–213. https://doi.org/10.1144/gsjgs.133.3.0191

    Article  Google Scholar 

  162. Sibson, R.H., Implications of fault-valve behaviour for rupture nucleation and recurrence, Tectonophysics, 1992, vol. 211, nos. 1–4, pp. 283–2930 90065-E. https://doi.org/10.1016 /0040-1951(92)

  163. Sibson, R.H., Thickness of the seismic slip zone, Bull. Seismol. Soc. Am., 2003, vol. 93, no. 3, pp. 1169–1178. https://doi.org/10.1785/0120020061

    Article  Google Scholar 

  164. Sidorin, A.Ya., Predvestniki zemletryasenii (Earthquake Precursors), Moscow: Nauka, 1992.

  165. Smith, S.A.F., Bistacchi, A., Mitchell, T.M., Mittempergher, S., and Di Toro, G., The structure of an exhumed intraplate seismogenic fault in crystalline basement, Tectonophysics, 2013, vol. 599, pp. 29–44. https://doi.org/10.1016/j.tecto.2013.03.031

    Article  Google Scholar 

  166. Smith, S.A.F., Tesei, T., Scott, J.M., and Collettini, C., Reactivation of normal faults as high-angle reverse faults due to low frictional strength: experimental data from the Moonlight Fault Zone, New Zealand, J. Struct. Geol., 2017, vol. 105, pp. 34–43. https://doi.org/10.1016/j.jsg.2017.10.009

    Article  Google Scholar 

  167. Sobolev, G.A., Kireenkova, S.M., Morozov, Yu.A., Smulskaya, A.I., Vettegren, V.I., Kulik, B.V., Mamalimov, R.I., and Shcherbakov, I.P., Nanokristally v gornykh porodakh (Nanocrystals in Rocks), Moscow: GEOS, 2016.

  168. Solum, G.S. and van der Pluijm, B.A., Quantification of fabrics in clay gouge from the Carboneras fault, Spain and implications for fault behavior, Tectonophysics, 2009, vol. 475, nos. 3–4, pp. 554–562. https://doi.org/10.1016/j.tecto.2009.07.006

    Article  Google Scholar 

  169. Summers, R. and Byerlee, J., A note on the effect of fault gouge composition on the stability of frictional sliding, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1977, vol. 14, no. 3, pp. 155–160. https://doi.org/10.1016/0148-9062(77)90007-9

    Article  Google Scholar 

  170. Sutherland, R., Townend, J., Toy, V.G., Upton, P., Coussens, J., Allen, M., et al., Extreme hydrothermal conditions at an active plate-bounding fault, Nature, 2017, vol. 546, no. 7656, pp. 137–140. https://doi.org/10.1038/nature22355

    Article  Google Scholar 

  171. Syrnikov, N.M. and Tryapitsyn, V.M., On the mechanism of an anthropogenic earthquake in Khibiny, Dokl. Akad. Nauk SSSR, 1990, vol. 314, no. 4, pp. 830–833.

    Google Scholar 

  172. Tarling, M.S., Smith, S.A.F., Viti, C., and Scott, J.M., Dynamic earthquake rupture preserved in a creeping serpentinite shear zone, Nat. Commun., 2018, vol. 9, no. 1, Article ID 3552. https://doi.org/10.1038/s41467-018-05965-0

    Article  Google Scholar 

  173. Tesei, T., Collettini, C., Viti, C., and Barchi, M.R., Fault architecture and deformation mechanisms in exhumed analogues of seismogenic carbonate-bearing thrusts, J. Struct. Geol., 2013, vol. 55, pp. 167–181. https://doi.org/10.1016/j.jsg.2013.07.007

  174. Tesei, T., Collettini, C., Barchi, M.R., Carpenter, B.M., and Di Stefano, G., Heterogeneous strength and fault zone complexity of carbonate-bearing thrusts with possible implications for seismicity, Earth Planet. Sci. Lett., 2014, vol. 408, pp. 307–318. https://doi.org/10.1016/j.epsl.2014.10.021

    Article  Google Scholar 

  175. Tesei, T., Lacroix, B., and Collettini, C., Fault strength in thin-skinned tectonic wedges across the smectite-illite transition: constraints from friction experiments and critical tapers, Geology, 2015, vol. 43, no. 10, pp. 923–926. https://doi.org/10.1130/G36978.1

    Article  Google Scholar 

  176. Tesei, T., Harbord, C.W.A., De Paola, N., Collettini, C., and Viti, C., Friction of mineralogically controlled serpentinites and implications for fault weakness, J. Geophys. Res.: Solid Earth, 2018, vol. 123, no. 8, pp. 6976–6991. https://doi.org/10.1029/2018JB016058

    Article  Google Scholar 

  177. Thomas, A.M., Beroza, G.C., and Shelly, D.R., Constraints on the source parameters of low-frequency earthquakes on the San Andreas Fault, Geophys. Res. Lett., 2016, vol. 43, no. 4, pp. 1464–1471. https://doi.org/10.1002/2015GL067173

    Article  Google Scholar 

  178. Townend, J. and Zoback, M.D., How faulting keeps the crust strong, Geology, 2000, vol. 28, pp. 399–402. https://doi.org/10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2

    Article  Google Scholar 

  179. Toy, V.G., Boulton, C.J., Sutherland, R., et al., Fault rock lithologies and architecture of the central Alpine fault, New Zealand, revealed by DFDP-1 drilling, Lithosphere, 2015, vol. 7, no. 2, pp. 155–173. https://doi.org/10.1130/L395.1

    Article  Google Scholar 

  180. Turcotte, D.L. and Schubert, G., Geodynamics: Applications of Continuum Physics to Geological Problems, New York: Wiley, 1982.

    Google Scholar 

  181. Uchida, N. and Burgmann, R., Repeating earthquakes, Annu. Rev. Earth Planet. Sci., 2019, vol. 47, pp. 305–332.

    Article  Google Scholar 

  182. Urbancic, T.I., Trifu, C-I, and Young, R.P., Stress release estimates, scaling behavior, and source complexities of mircoseismic events, Proc. 3rd Int. Symp.: Rockbursts and Seismicity in Mines, Kingston, 1993, Rotterdam: Balkema, 1993, pp. 255–260.

  183. Verberne, B.A., He, C., and Spiers, C.J., Frictional properties of sedimentary rocks and natural fault gouge from the longmen shan fault zone, Sichuan, China, Bull. Seismol. Soc. Am., 2010, vol. 100, no. 5B, pp. 2767–2790. https://doi.org/10.1785/0120090287

    Article  Google Scholar 

  184. Verberne, B.A., Niemeijer, A.R., De Bresser, J.H.P., and Spiers, C.J., Mechanical behavior and microstructure of simulated calcite fault gouge sheared at 20–600°C: Implications for natural faults in limestones, J. Geophys. Res.: Solid Earth, 2015, vol. 120, no. 12, pp. 8169–8196. https://doi.org/10.1002/2015JB012292

    Article  Google Scholar 

  185. Vettegren’, V.I., Arora, K., Ponomarev, A.V., Mamalimov, R.I., Shcherbakov, I.P., and Kulik, V.B., Friction-induced changes in the surface structure of basalt and granite, Phys. Solid State, 2018, vol. 60, no. 5, pp. 975–980.

    Article  Google Scholar 

  186. Vettegren, V.I., Ponomarev, A.V., Kulik, V.B., Mamalimov, R.I., and Shcherbakov, I.P., Failure of quartz diorite at friction, Geofiz. Issled., 2020, vol. 21, no. 4, pp. 35–50.

    Google Scholar 

  187. Viti, C., Collettini, C., and Tesei, T., Pressure solution seams in carbonatic fault rocks: mineralogy, micro/nanostructure and deformation mechanism, Contrib. Mineral. Petrol., 2014, vol. 167, no. 2, Article ID 970. https://doi.org/10.1007/s00410-014-0970-1

    Article  Google Scholar 

  188. Viti, C., Collettini, C., Tesei, T., Tarling, M., and Smith, S.A.F., Deformation processes, textural evolution and weakening in retrograde serpentinites, Minerals, 2018, vol. 8, no. 6, Article ID 241. https://doi.org/10.3390/min8060241

    Article  Google Scholar 

  189. Volpe, G., Pozzi, G., Carminati, E., Barchi, M.R., Scuderi, M.M., Tinti, E., Aldega, L., Marone, C., and Collettini, C., Frictional controls on the seismogenic zone: Insights from the Apenninic basement, Central Italy, Earth Planet. Sci. Lett., 2022, vol. 583, no. 6, Article ID 117444. https://doi.org/10.1016/j.epsl.2022.117444

    Article  Google Scholar 

  190. Wallis, D., Lloyd, G.E., Phillips, R.J., Parsons, A.J., and Walshaw, R.D., Low effective fault strength due to frictional-viscous flow in phyllonites, Karakoram Fault Zone, NW India, J. Struct. Geol., 2015, vol. 77, pp. 45–61. https://doi.org/10.1016/j.jsg.2015.05.010

    Article  Google Scholar 

  191. Walsh, F.R. and Zoback, M.D., Probabilistic assessment of potential fault slip related to injection-induced earthquakes: application to north-central Oklahoma, USA, Geology, 2016, vol. 44, no. 12, pp. 991–994. https://doi.org/10.1130/G38275.1

    Article  Google Scholar 

  192. Walter, J.I., Svetlizky, I., Fineberg, J., Brodsky, E.E., Tulaczyk, S., Barcheck, C.G., and Carter, S.P., Rupture speed dependence on initial stress profiles: Insights from glacier and laboratory stick-slip, Earth Planet. Sci. Lett., 2015, vol. 411, no. B9, pp. 112–120. https://doi.org/10.1016/j.epsl.2014.11.025

    Article  Google Scholar 

  193. Warr, L.N., Wojatschke, J., Carpenter, B.M., Marone, C., Schleicher, A.N., and van der Pluijm, B.A., A “slice-and-view” (FIB-SEM) study of clay gouge from the SAFOD creeping section of the San Andreas Fault at ∼2.7 km depth, J. Struct. Geol., 2014, vol. 69, pp. 234–244. https://doi.org/10.1016/j.jsg.2014.10.006

    Article  Google Scholar 

  194. Wibberley, C.A.J., Initiation of basement thrust detachments by fault-zone reaction weakening, Geol. Soc., London, Spec. Publ., 2005, vol. 245, no. 1, pp. 347–372. https://doi.org/10.1144/GSL.SP.2005.245.01.17

    Article  Google Scholar 

  195. Wibberley, C.A.J. and Shimamoto, T., Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan, J. Struct. Geol., 2003, vol. 25, no. 1, pp. 59–78. https://doi.org/10.1016/S0191-8141(02)00014-7

    Article  Google Scholar 

  196. Wibberley, C.A.J., Yielding, G., and Di Toro, G., Recent advances in the understanding of fault zone internal structure: a review, Geol. Soc. London, Spec. Publ., 2008, vol. 299, no. 1, pp. 5–33. https://doi.org/10.1144/sp299.2

    Article  Google Scholar 

  197. Woodcock, N. and Mort, K., Classification of fault breccias and related fault rocks, Geol. Mag., 2008, vol. 145, no. 3, pp. 435–440. https://doi.org/10.1017/S0016756808004883

    Article  Google Scholar 

  198. Xing, T., Zhu, W., French, M., and Belzer, B., Stabilizing effect of high pore fluid pressure on slip behaviors of gouge- bearing faults, J. Geophys. Res.: Solid Earth, 2019, vol. 124, no. 14, pp. 9526–9545. https://doi.org/10.1029/2019JB018002

    Article  Google Scholar 

  199. Xu, Z. and Li, H., The Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, in Earthquake and Disaster Risk: Decade Retrospective of the Wenchuan Earthquake, Singapore: Springer, 2019, pp. 69–105. https://doi.org/10.1007/978-981-13-8015-0_3

    Book  Google Scholar 

  200. Yamanaka, Y. and Kikuchi, M., Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, J. Geophys. Res.: Solid Earth, 2004, vol. 109, no. B7, Article ID B07307. .https://doi.org/10.1029/2003JB002683

    Article  Google Scholar 

  201. Yu, H., Harrington, R.M., Kao, H., et al., Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip, Nat. Commun., 2021, vol. 12, no. 1, Article ID 6862. https://doi.org/10.1038/s41467-021-26961-x

    Article  Google Scholar 

  202. Zoback, M., Hickman, S., and Ellsworth, W., Scientific drilling into the San Andreas fault zone, Eos, Trans. Am. Geophys. Union, 2010, vol. 91, no. 22, pp. 197–204. https://doi.org/10.2204/iodp.sd.11.02.2011

    Article  Google Scholar 

  203. Zoback, M.D., Reservoir Geomechanics, Cambridge: Cambridge Univ. Press, 2010.

    Google Scholar 

  204. Zoback, M.D. and Zoback, M.L., State of stress in the Earth’s lithosphere, in International Handbook of Earthquake and Engineering Seismology, Part A, Int. Geophys. Ser., vol. 81, Part A, Amsterdam: Academic Press, 2002, pp. 559–568.

Download references

ACKNOWLEDGEMENTS

We are deeply grateful to the reviewers, Dr. B.A. Ivanov and Dr. A.V. Ponomarev, for their valuable comments.

Funding

The work was carried in partial fulfillment of the state contract of the Russian Federation Ministry of Science and Higher Education with IDG RAS (the review of the structure of the faults zones, project no. 122032900178-7) and supported by the Russian Science Foundation (project no. 22-17-00204, the review of the friction patterns and seismological observations).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Kocharyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocharyan, G.G., Besedina, A.N., Gridin, G.A. et al. Friction as a Factor Determining the Radiation Efficiency of Fault Slips and the Possibility of Their Initiation: State of the Art. Izv., Phys. Solid Earth 59, 337–363 (2023). https://doi.org/10.1134/S1069351323030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351323030060

Keywords:

Navigation