Skip to main content
Log in

Nucleation and Evolution of Sliding in Continental Fault Zones under the Action of Natural and Man-Made Factors: A State-of-the-Art Review

  • REWIEV
  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—A review is presented of the state-of-the-art publications concerning the nucleation and evolution of fault slip in the Earth’s crust. The review covers various aspects of the problem, from the structure of the slip localization zones to the triggering of dynamic rupture by exogenous factors. The publications show a clear current trend from investigating individual effects to studying interactions between subsets of the relevant processes on several spatial and time scales to establish probable correlations between different phenomena. The efforts of many research teams in the field of earthquake source physics and faulting are focused towards creating a computational model that relies on physical principles and successfully fulfils forecasting tasks. The review demonstrates multi-aspect and multi-scale character of the discussed problem and provides coverage of recent results and challenges in achieving the objectives. Some promising lines of development in geomechanics of faults, as they are seen from the author’s standpoint, are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V., Tectonic earthquakes of anthropogenic origin, Izv. Phys. Solid Earth, 2016, vol. 52, no. 2, pp. 173–194.

    Article  Google Scholar 

  2. Adushkin, V.V., Technogenic tectonic seismicity in Kuzbass, Russ. Geol. Geophys., 2018, vol. 59, no. 5, pp. 571–583.

    Article  Google Scholar 

  3. Adushkin, V.V. and Turuntaev, S.B., Tekhnogennaya seismichnost’ – indutsirovannaya i triggernaya (Anthropogenic Seismicity: Induced and Triggererd), Moscow: IDG RAN, 2015.

  4. Aharonov, E. and Scholz, C.H., A physics-based rock friction constitutive law: Steady state friction, J. Geophys. Res.: Solid Earth, 2018, vol. 123, no. 2, pp. 1591–1614. https://doi.org/10.1002/2016JB013829

    Article  Google Scholar 

  5. Allmann, B.P. and Shearer, P.M., Global variations of stress drop for moderate to large earthquakes, J. Geophys. Res.: Solid Earth, 2009, vol. 114, Paper ID B01310. https://doi.org/10.1029/2008JB005821

  6. Ampuero, J.P. and Mao, X., Upper limit on damage zone thickness controlled by seismogenic depth, in Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture, Thomas, M.Y., Mitchell, T.M., and Bhat, H.S., Eds., Geophys. Monogr. Ser., vol. 227, Washington: John Wiley and Sons, 2017, pp. 243–254.

  7. Ampuero, J.-P. and Rubin, A.M., Earthquake nucleation on rate-and-state faults: Aging and slip laws, J. Geophys. Res.: Solid Earth, 2008, vol. 113, Paper ID B01302. https://doi.org/10.1029/2007JB005082

  8. Anders, M.H. and Wiltschko, D.V., Microfracturing, paleostress and the growth of faults, J. Struct. Geol., 1994, vol. 16, no. 6, pp. 795–815.

    Article  Google Scholar 

  9. Anderson, J., Biasi, G., and Wesnousky, S., Fault-scaling relationships depend on the average fault slip rate, Bull. Seismol. Soc. Am., 2017, vol. 107, no. 6, pp. 2561–2577. https://doi.org/10.1785/0120160361

    Article  Google Scholar 

  10. Andrews, D.J., Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res.: Solid Earth, 2005, vol. 110, no. B1, Paper ID B01307.

  11. Avagimov, A.A. and Zeigarnik, V.A., The analysis of the trigger action exerted by electromagnetic fields on a geological medium: Quantitative estimates of the interaction, Izv. Phys. Solid Earth, 2016, vol. 52, no. 2, pp. 233–241.

    Article  Google Scholar 

  12. Avouac, J.P., From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle, Annu. Rev. Earth Planet. Sci., 2015, vol. 43, pp. 233–271.https://doi.org/10.1146/annurev-earth-060614-105302

  13. Baranov, A.A., Baranov, S.V., and Shebalin, P.N., A quantitative estimate of the effects of sea tides on aftershock activity: Kamchatka, J. Volcanol. Seismol., 2019, vol. 13, no. 1, pp. 56–69.

    Article  Google Scholar 

  14. Barbot, S., Modulation of fault strength during the seismic cycle by grain-size evolution around contact junctions, Tectonophysics, 2019, vol. 765, pp. 129–145. https://doi.org/10.1016/j.tecto.2019.05.004

    Article  Google Scholar 

  15. Barbot, S., Fialko, Y., and Bock, Y., Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: Stress driven creep on a fault with spatially variable rate-and-state friction parameters, J. Geophys. Res., 2009, vol. 114, Paper ID B07405. https://doi.org/10.1029/2008JB005748

  16. Barton, N., Rock Quality, Seismic Velocity, Attenuation, and Anisotropy, London: Taylor and Francis Group, 2007.

    Google Scholar 

  17. Batukhtin, I.V., Budkov, A.M., and Kocharyan, G.G., Start and rupture on faults with a heterogeneous surface, Mater. V Mezhdunar. konf.: Triggernye effekty v geosistemakh (Proc. V Int. Conf.: Trigger Effects in Geosystems), Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow, 2019, Moscow: TORUS PRESS, 2019, pp. 137–149.

  18. Beeler, N.M., Tullis, T.E., and Goldsby, D.L., Constitutive relationships and physical basis of fault strength due to flash heating, J. Geophys. Res.: Solid Earth, 2008, vol. 113, no. B1, Paper ID B01401. https://doi.org/10.1029/2007JB004988

  19. Besedina, A.N., Kishkina, S.B., Kocharyan, G.G., and Ryakhovskiy, I.A., Microseismic noise before and after strong earthquakes: Case study of Chilean subduction zone, Izv. Phys. Solid Earth, 2020, vol. 56, no. 2, pp. 151–161.

    Article  Google Scholar 

  20. Bhat, H.S., Supershear Earthquakes. Theory. Experimenrs. Observations, 2020, https://harshasbhat.github.io/files/ Bhat2021a.pdf

  21. Bhat, H.S., Biegel, R.L., Rosakis, A.J, and Sammis, C.G., The effect of asymmetric damage on dynamic shear rupture propagation II: with mismatch in bulk elasticity, Tectonophysics, 2010, vol. 493, nos. 3–4. pp. 263–271.

    Article  Google Scholar 

  22. Blake, O.O. and Faulkner, D.R., The effect of fracture density and stress state on the static and dynamic bulk moduli of Westerly granite, J. Geophys. Res.: Solid Earth, 2016, vol. 121, pp. 2382–2399. https://doi.org/10.1002/2015JB012310

    Article  Google Scholar 

  23. Boneh, Y. and Reches, Z., Geotriboloty-friction, wear, and lubrication of faults, Tectonophysics, 2018, vol. 733, pp. 171–181. https://doi.org/10.1016/j.tecto.2017.11.022

    Article  Google Scholar 

  24. Bornyakov, S.A., Salko, D.V., Seminsky, K.Zh., Demberel, S., Ganzorig, D., Batsaihan, Ts., and Togtohbayar, S., Instrumental recording of slow deformation waves in the South Baikal geodynamic study site, Dokl. Earth Sci., 2017, vol. 473, no. 1, pp. 371–374.

    Article  Google Scholar 

  25. Bouchon, M., Durand, V., Marsan, D., Karabulut, H., and Schmittbuhl, J., The long precursory phase of most large interplate earthquakes, Nat. Geosci., 2013, vol. 6, pp. 299–302.

    Article  Google Scholar 

  26. Boulton, C., Janku-Capova, L., Williams, J.N., and Coussens, J.P., A window into thousands of earthquakes: Results from the Deep Fault Drilling Project (DFDP), N. Z. Sci. Rev., 2017a, vol. 74, pp. 27–35.

    Google Scholar 

  27. Boulton, C., Menzies, C.D., Toy, V.G., Townend, J., and Sutherland, R., Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, Alpine Fault, New Zealand, Geochem. Geophys. Geosyst., 2017b, vol. 18, no. 1, pp. 238–265.

    Article  Google Scholar 

  28. Boulton, C., Yao, L., Faulkner, D.R., Townend, J., Toy, V.G., Sutherland, R., Ma, S., and Shimamoto, T., High-velocity frictional properties of Alpine fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation, J. Struct. Geol., 2017c, vol. 97, pp. 71–92.

    Article  Google Scholar 

  29. Bourouis, S. and Bernard, P., Evidence for couplet seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients, Geophys. J. Int., 2007, vol. 169, pp. 723–732.

    Article  Google Scholar 

  30. Brantut, N., Time-dependent recovery of microcrack damage and seismic wave speeds in deformed limestone, J. Geophys. Res.: Solid Earth, 2015, vol. 120, no. 12, pp. 8088–8109. https://doi.org/10.1002/2015JB012324

    Article  Google Scholar 

  31. Brantut, N., Schubnel, A., Rouzaud, J.-N., Brunet, F., and Shimamoto, T., High-velocity frictional properties of a clay bearing, fault gouge and implications for earthquake mechanics, J. Geophys. Res., 2008, vol. 113, Paper ID B10401. https://doi.org/10.1029/2007JB005551

  32. Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N.M., Nadeau, R.M., and Larose, E., Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations, Science, 2008, vol. 321, no. 5895, pp. 1478–1481.

    Article  Google Scholar 

  33. Brodsky, E.E. and Kanamori, H., Elastohydrodynamic lubrication of faults, J. Geophys. Res.: Solid Earth, 2000, vol. 106, pp. 16357–16374.

    Article  Google Scholar 

  34. Brodsky, E., Roeloffs, E., Woodcock, D., Gall, I., and Manga, M., A mechanism for sustained ground water pressure changes induced by distant earthquakes, J. Geophys. Res., 2003, vol. 108, pp. 2390–2400.

    Article  Google Scholar 

  35. Brodsky, E.E., Gilchrist, J.J., Sagy, A., and Collettini, C., Faults smooth gradually as a function of slip, Earth Planet. Sci. Lett., 2011, vol. 302, nos. 1–2, pp. 185–193.

    Article  Google Scholar 

  36. Brodsky, E.E., McLaskey, G.C., and Ke, C.Y., Groove generation and coalescence on a large scale laboratory fault, AGU Adv., 2020, vol. 1, no. 4, Paper ID e2020AV000184. https://doi.org/10.1029/2020AV000184

  37. Bruhat, L., Fang, Z., and Dunham, E.M., Rupture complexity and the supershear transition on rough faults, J. Geophys. Res.: Solid Earth, 2016, vol. 121, pp. 210–224. https://doi.org/10.1002/2015JB012512

    Article  Google Scholar 

  38. Bürgmann, R., The geophysics, geology and mechanics of slow fault slip, Earth Planet. Sci. Lett., 2018, vol. 495, pp. 112–134. https://doi.org/10.1016/j.epsl.2018.04.062

    Article  Google Scholar 

  39. Bykov, V.G., Development of sliding regimes in faults and slow deformation waves, Fiz. Mezomekh., 2019, vol. 22, no. 4, pp. 39–46. https://doi.org/10.31857/S0002333720040055

    Article  Google Scholar 

  40. Carpenter, B.M., Ikari, M.J., and Marone, C., Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges, J. Geophys. Res.: Solid Earth, 2016, vol. 121, pp. 1183–1201. https://doi.org/10.1002/2015JB012136

    Article  Google Scholar 

  41. Chen, J. and Niemeijer, A.R., Seismogenic potential of a gouge-filled fault and the criterion for its slip stability: Constraints from a microphysical model, J. Geophys. Res.: Solid Earth, 2017, vol. 122, pp. 9658–9688. https://doi.org/10.1002/2017JB014228

    Article  Google Scholar 

  42. Chen, J., Niemeijer, A.R., and Spiers, C.J., Microphysically derived expressions for rate-and-state friction parameters a, b, and Dc, J. Geophys. Res., 2017, vol. 122, no. 12, pp. 9627–9657.

    Article  Google Scholar 

  43. Chen, T. and Lapusta, N., Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model, J. Geophys. Res., 2009, vol. 114, Paper ID B01311. https://doi.org/10.1029/2008JB005749

  44. Chen, X., Madden, A.S., Bickmore, B.R., and Reches, Z., Dynamic weakening by nanoscale smoothing during high-velocity fault slip, Geology, 2013, vol. 41, no. 7, pp. 739–742. https://doi.org/10.1130/G34169.1

    Article  Google Scholar 

  45. Chen, X., Carpenter, B.M. and Reches, Z., Asperity failure control of stick–slip along brittle faults, Pure Appl. Geophys., 2020, vol. 177, pp. 3225–3242. https://doi.org/10.1007/s00024-020-02434-y

    Article  Google Scholar 

  46. Chester, F.M. and Chester, J.S., Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 1998, vol. 295, pp. 199–221. https://doi.org/10.1016/S0040-1951(98)00121-8

    Article  Google Scholar 

  47. Chester, F.M., Evans, J.P., and Biegel, R.L., Internal structure and weakening mechanisms of the San Andreas fault, J. Geophys. Res.; Solid Earth, 1993, vol. 98, no. B1, pp. 771–786.

    Article  Google Scholar 

  48. Chester, J.S., Chester, F.M., and Kronenberg, A.K., Fracture surface energy of the Punchbowl fault, San Andreas system, Nature, 2005, vol. 437, no. 7055, pp. 133–136.

    Article  Google Scholar 

  49. Christophersen, A. and Smith, E.G., Foreshock rates from aftershock abundance, Bull. Seismol. Soc. Am., 2008, vol. 98, pp. 2133–2148.

    Article  Google Scholar 

  50. Cocco, M. and Bizzarri, A., On the slip-weakening behavior of rate- and state dependent constitutive laws, Geophys. Res. Lett., 2002, vol. 29, no. 11, pp. 11-1–11-4.

  51. Cocco, M., Tinti, E., and Cirella, A., On the scale dependence of earthquake stress drop, J. Seismol., 2016, vol. 20, no. 4, pp. 1151–1170.

    Article  Google Scholar 

  52. Cochran, E.S., Vidale, J.E., and Tanaka, S., Earth tides can trigger shallow thrust fault earthquakes, Science, 2004, vol. 306, pp. 1164–1166.

    Article  Google Scholar 

  53. Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., and Shimamoto, T., Natural and experimental evidence of melt lubrication of faults during earthquakes, Science, 2006, vol. 311, pp. 647–649. https://doi.org/10.1126/science.1121012

    Article  Google Scholar 

  54. Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., and Shimamoto, T., Fault lubrication during earthquakes, Nature, 2011, vol. 471, no. 7339, pp. 494–498. https://doi.org/10.1038/nature09838

    Article  Google Scholar 

  55. Dieterich, J.H., Modeling of rock friction: 1. Experimental results and constitutive equations, J. Geophys. Res., 1979, vol. 84, no. B5, pp. 2161–2168.

    Article  Google Scholar 

  56. Dieterich, J.H. and Smith, D.E., Nonplanar faults: mechanics of slip and off-fault damage, Pure Appl. Geophys., 2009, vol. 166, pp. 1799–1815. https://doi.org/10.1007/s00024-009-0517-y

    Article  Google Scholar 

  57. Dodge, D.A., Beroza, G.C., and Ellsworth, W.L., Foreshock sequence of the 1992 Landers, California, earthquake and its implications for earthquake nucleation, J. Geophys. Res., 1995, vol. 100, pp. 9865–9880.

    Article  Google Scholar 

  58. Dodge, D.A., Beroza, G.C., and Ellsworth, W.L., Detailed observations of California foreshock sequences: Implications for the earthquake initiation process, J. Geophys. Res., 1996, vol. 101, pp. 22371–22392.

    Article  Google Scholar 

  59. Dunham, E.M., Belanger, D., Cong, L., and Kozdon, J.E., Earthquake ruptures with strongly rate-weakeningfriction and off-fault plasticity, Part 1: Planar faults, Bull. Seismol. Soc. Am., 2011a, vol. 101, no. 5, pp. 2296–2307.

    Article  Google Scholar 

  60. Dunham, E.M., Belanger, D., Cong, L., and Kozdon, J.E., Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, Part 2: Nonplanar faults, Bull. Seismol. Soc. Am., 2011b, vol. 101, no. 5, pp. 2308–2322.

    Article  Google Scholar 

  61. Ellsworth, W.L., Injection-induced earthquakes, Science, 2013, vol. 341, no. 6142, artic.1225942.

  62. Ellsworth, W.L. and Bulut, F., Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks, Nat. Geosci., 2018, vol. 11, pp. 531–535. https://doi.org/10.1038/s41561-018-0145-1

    Article  Google Scholar 

  63. Emanov, A.F., Emanov, A.A., Fateev, A.V., and Leskova, E.V., The technogenic ML = 6.1 Bachatskoe earthquake of 18 June 2013 in Kuzbass: the world strongest event during mining operations, Vopr. Inzh. Seismol., 2016, vol. 43, no. 4, pp. 34–60.

    Google Scholar 

  64. Erickson, B.A., Dunham, E.M., and Khosravifar, A., A finite difference method for off-fault plasticity throughout the earthquake cycle, J. Mech. Phys. Solids, 2017, vol. 109, pp. 50–77. https://doi.org/10.1016/j.jmps.2017.08.002

    Article  Google Scholar 

  65. Evans, J.P., Forster, C.B., and Goddard, J.V., Permeability of fault-related rocks, and implications for hydraulic structure of fault zones, J. Struct. Geol., 1997, vol. 19, no. 11, pp. 1393–1404.

    Article  Google Scholar 

  66. Fagereng, A. and Sibson, R.H., Melange rheology and seismic style, Geology, 2010, vol. 38, pp. 751–754. https://doi.org/10.1130/G30868.1

    Article  Google Scholar 

  67. Fang, Z. and Dunham, E.M., Additional shear resistance form fault roughness and stress levels on geometrically complex faults, J. Geophys. Res., 2013, vol. 118, no. 7, pp. 3642–3654.

    Article  Google Scholar 

  68. Faulkner, D.R., Mitchell, T.M., Healy, D., and Heap, M.J., Slip on weak faults by the rotation of regional stress in the fracture damage zone, Nature, 2006, vol. 444, no. 7121, pp. 922–925. https://doi.org/10.1038/nature05353

    Article  Google Scholar 

  69. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J.R., Schlische, W., Shipton, Z.K., Wibberley, C.A.J., and Withjack, M.O., A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 2010, vol. 32, no. 11, pp. 1557–1575.

    Article  Google Scholar 

  70. Faulkner, D.R., Mitchell, T.M., Jensen, E., and Cembrano, J., Scaling of fault damage zones with displacement and the implications for fault growth processes, J. Geophys. Res.: Solid Earth, 2011, vol. 116, no. B5, pp. 1–11. https://doi.org/10.1029/2010JB007788

    Article  Google Scholar 

  71. Faulkner, D.R., Sanchez-Roa, C., Boulton, C., and den Hartog, S.A.M., Pore fluid pressure development in compacting fault gouge in theory, experiments, and nature, J. Geophys. Res.: Solid Earth, 2018, vol. 123, no. 1, pp. 226–241. https://doi.org/10.1002/2017JB015130

    Article  Google Scholar 

  72. Foulger, G.R., Wilson, M.P., Gluyas, J.G., Julian, B.R., and Davies, R.J., Global review of human-induced earthquakes, Earth-Sci. Rev., 2018, vol. 178, pp. 438–514.

    Article  Google Scholar 

  73. Frank, W.B., Slow slip hidden in the noise: The intermittence of tectonic release, Geophys. Res. Lett., 2016, vol. 43, no. 19, pp. 10,125–10,133. https://doi.org/10.1002/2016GL069537

    Article  Google Scholar 

  74. Freed, A.M., Earthquake triggering by static, dynamic, and post-seismic stress transfer, Annu. Rev. Earth Planet. Sci., 2005, vol. 33, pp. 335–367. https://doi.org/10.1146/annurev.earth.33.092203.122505

    Article  Google Scholar 

  75. Fulton, P.M. and Brodsky, E.E., In situ observations of earthquake-driven fluid pulses within the Japan Trench plate boundary fault zone, Geology, 2016, vol. 44, no. 10, pp. 851–854. https://doi.org/10.1130/G38034.1

    Article  Google Scholar 

  76. Fulton, P.M., Brodsky, E.E., Kano, Y., Mori, J., Chester, F., Ishikawa, T., Harris, R.N., Lin, W., Eguchi, N., Toczko, S., and Expedition 343, 343T, and KR13-08 Collab., Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements, Science, 2013, vol. 342, pp. 1214–1217.

    Article  Google Scholar 

  77. Gabriel, A.A., Ampuero, J.P., Dalguer, L.A., and Mai, P.M., Source properties of dynamic rupture pulses with offfault plasticity, J. Geophys. Res.: Solid Earth, 2013, vol. 118, no. 8, pp. 4117–4126. https://doi.org/10.1002/jgrb.50213

    Article  Google Scholar 

  78. Gao, H., Schmidt, D.A., and Weldon, R.J., Scaling relationships of source parameters for slow slip events, Bull. Seismol. Soc. Am., 2012, vol. 102, no. 1, pp. 352–360. https://doi.org/10.178510120110096

    Article  Google Scholar 

  79. Garagash, I.A. and Nikolaevskii, V.N., Non-associated flow laws and plastic deformation localization, Usp. Mekh., Mezhdunar. Zh. Sots. Stran (Varshava), 1989, vol. 12, no. 1, pp. 131–183.

    Google Scholar 

  80. Goebel, T.H.W. and Brodsky, E.E., The spatial footprint of injection wells in a global compilation of induced earthquake sequences, Science, 2018, vol. 361, pp. 899–904.

    Article  Google Scholar 

  81. Goebel, T.H.W, Hauksson, E., Shearer, P.M., and Ampuero, J.P., Stress-drop heterogeneity within tectonically complex regions: a case study of San Gorgonio Pass, southern California, Geophys. J. Int., 2015, vol. 202, no. 1, pp. 514–528. https://doi.org/10.1093/gji/ggv160

    Article  Google Scholar 

  82. Goldsby, D.L. and Tullis, T.E., Low frictional strength of quartz rocks at subseismic slip rates, Geophys. Res. Lett., 2002, vol. 29, no. 17, pp. 25-1–25-4. https://doi.org/10.1029/2002GL015240

  83. Gomberg, J., Unsettled earthquake nucleation, Nat. Geosci., 2018, vol. 11, pp. 463–464. https://doi.org/10.1038/s41561-018-0149-x

    Article  Google Scholar 

  84. Gomberg, J., Wech, A., Creager, K., Obara, K., and Agnew, D., Reconsidering earth-quake scaling, Geophys. Res. Lett., 2016, vol. 43, no. 12, pp. 6243–6251. https://doi.org/10.1002/2016GL069967

    Article  Google Scholar 

  85. Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A.P., Clinton, J.F., Stabile, T.A., Dost, B., Fernandez M.G., Wiemer, S., and Dahm, T., Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective, Rev. Geophys., 2017, vol. 55, pp. 310–340. https://doi.org/10.1002/2016RG000542

    Article  Google Scholar 

  86. Grigoli, F., Cesca, S., Rinaldi, A.P., Manconi, A., López-Comino, J.A., Clinton, J.F., Westaway, R., Cauzzi, C., Dahm, T., and Wiemer, S., The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea, Science, 2018, vol. 360, no. 6392, pp. 1003–1006. https://doi.org/10.1126/science.aat2010

    Article  Google Scholar 

  87. Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., and Elsworth, D., Seismicity triggered by fluid injection-induced aseismic slip, Science, 2015, vol. 348, pp. 1224–1226.https://doi.org/10.1126/science.aab0476

  88. Gupta, H.K., Reservoir Triggered Seismicity (RTS) at Koyna, India, over the Past 50 Yrs, Bull. Seismol. Soc. Am., 2018, vol. 108, no. 5B, pp. 2907–2918.

    Article  Google Scholar 

  89. Hamling, I.J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., and Stirling, M., Complex multi-fault rupture during the 2016 Mw 7.8 Kaikoura earthquake, New Zealand, Science 2017, vol. 356, no. 6334, Paper ID eaam7194. https://doi.org/10.1126/science.aam7194

  90. Harbord, C.W.A., Nielsen, S.B., De Paola, N., and Holdsworth, R.E., Earthquake nucleation on rough faults, Geology, 2017, vol. 45, pp. 931–934. https://doi.org/10.1130/G39181.1

    Article  Google Scholar 

  91. Hatano, T., Rate and state friction law as derived from atomistic processes at asperities, Stat. Mech., 2015. arXiv: 1512.05078 [cond-mat.stat-mech]

  92. Hawthorne, J.C. and Bartlow, N.M., Observing and modeling the spectrum of a slow slip event, J. Geophys. Res.: Solid Earth, 2018, vol. 123, no. 5, pp. 4243–4265. https://doi.org/10.1029/2017JB015124

    Article  Google Scholar 

  93. Hawthorne, J.C. and Rubin, A.M., Laterally propagating slow slip events in a rate and state friction model with a velocity-weakening to velocity-strengthening transition, J. Geophys. Res.: Solid Earth, 2013, vol. 118, pp. 3785–3808. https://doi.org/10.1002/jgrb.50261

    Article  Google Scholar 

  94. He, C., Wong, T.-F., and Beeler, N.M., Scaling of stress drop with recurrence interval and loading velocity for laboratory derived fault strength relations, J. Geophys. Res.: Solid Earth, 2003, vol. 108, no. B1, Paper ID 2037. https://doi.org/10.1029/2002JB001890

  95. Heap, M.J., Faulkner, D.R., Meredith, P.G., and Vinciguerra, S., Elastic moduli evolution and accompanying stress changes with increasing crack damage: implications for stress changes around fault zones and volcanoes during deformation, Geophys. J. Int., 2010, vol. 183, pp. 225–236. https://doi.org/10.1111/j.1365-246X.2010.04726.x

    Article  Google Scholar 

  96. Helmstetter, A. and Shaw, B., Afterslip and aftershocks in the rate-and-state friction law, J. Geophys. Res., 2009, vol. 114, Paper ID B01308. https://doi.org/10.1029/2007JB005077

  97. Hetland, E.A., Simons, M., and Dunham, E.M., Post-seismic and interseismic fault creep I: Model description, Geophys. J. Int., 2010, vol. 181, pp. 81–98. https://doi.org/10.1111/j.1365-246X.2010.04522.x

    Article  Google Scholar 

  98. Hill, D.P. and Prejean, S.G., Dynamic triggering, in Treatise on Geophysics, 2nd ed., vol. 4, Schubert, G., Ed., Amsterdam: Elsevier, 2015, pp. 273–304. https://doi.org/10.1016/B978-0-444-53802-4.00078-6

  99. Huang, Y., Ampuero, J.-P., and Helmberger, D.V., Earthquake ruptures modulated by waves in damaged fault zones, J. Geophys. Res.: Solid Earth, 2014, vol. 119, pp. 3133–3154. https://doi.org/10.1002/2013JB010724

    Article  Google Scholar 

  100. Huang, Y., Ampuero, J.-P., and Helmberger, D.V., The potential for supershear earthquakes in damaged fault zones— theory and observations, Earth Planet. Sci. Lett., 2016, vol. 433, pp. 109–115. https://doi.org/10.1016/j.epsl.2015.10.046

    Article  Google Scholar 

  101. Hui, H., Lingsen, M., Roland, B., Wei, W., and Kang, W., Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes, Earth Planet. Sci. Lett., 2020, vol. 551, Paper ID 116582.https://doi.org/10.1016/j.epsl.2020.116582

  102. Ide, S. and Takeo, M., Determination of constitutive relations of fault slip based on seismic wave analysis, J. Geophys. Res., 1997, vol. 102, no. B12, pp. 27,379–27,391. https://doi.org/10.1029/97JB02675

    Article  Google Scholar 

  103. Ide, S., Beroza, G.C., Shelly, D.R., and Uchide, T., A scaling law for slow earthquakes, Nature, 2007, vol. 447, pp. 76–79.

    Article  Google Scholar 

  104. Ide, S., Yabe, S., and Tanaka, Y., Earthquake potential revealed by tidal influence on earthquake size–frequency statistics, Nat. Geosci., 2016, vol. 9, pp. 834–837. https://doi.org/10.1038/ngeo2796

    Article  Google Scholar 

  105. Ikari, M.J., Marone, C., Saffer, D.M., and Kopf, A.J., Slip weakening as a mechanism for slow earthquakes, Nat. Geosci., 2013, vol. 6, pp. 468–472. https://doi.org/10.1038/NGEO18198

    Article  Google Scholar 

  106. Ikari, M. J., Carpenter, B. M. and C. Marone, A microphysical interpretation of rate- and state-dependent friction for fault gouge, Geochem. Geophys. Geosys., 2016, vol. 17, pp. 1660–1677. https://doi.org/10.1002/2016GC006286

    Article  Google Scholar 

  107. Janku-Capova, L., Sutherland, R., Townend, J., Doan, M.L., Massiot, C., Coussens, J., and Celerier, B., Fluid flux in fractured rock of the Alpine fault hanging-wall determined from temperature logs in the DFDP-2B borehole, New Zealand, Geochem. Geophys. Geosyst., 2018, vol. 19, no. 8, pp. 2631–2646. https://doi.org/10.1029/2017GC007317

    Article  Google Scholar 

  108. Jeppson, T.N., Bradbury, K.K., and Evans, J.P., Geophysical properties within the San Andreas fault zone at the San Andreas fault observatory at depth and their relationships to rock properties and fault zone structure, J. Geophys. Res., 2010, vol. 115, Paper ID B12423. https://doi.org/10.1029/2010JB007563

  109. Jiang, J. and Lapusta, N., Deeper penetration of large earthquakes on seismically quiescent faults, Science, 2016, vol. 352, no. 6291, pp. 1293–1297.

    Article  Google Scholar 

  110. Jiang, J. and Lapusta, N., Connecting depth limits of interseismic locking, microseismicity, and large earthquakes in models of long-term fault slip, J. Geophys. Res.: Solid Earth, 2017, vol. 122, no. 8, pp. 6491–6523. https://doi.org/10.1002/2017JB014030

    Article  Google Scholar 

  111. Johnson, P.A. and Jia, X., Nonlinear dynamics, granular media and dynamic earthquake triggering, Nature, 2005, vol. 437, no. 6, pp. 871–874.

    Article  Google Scholar 

  112. Johnson, P.A., Rouet-Leduc, B., Pyrak-Nolte, L.J., Beroza, G.C., Marone, C.J., Hulbert, C., Howard, A., Singer, P., Gordeev, D., Karaflos, D., Levinson, C.J., Pfeiffer, P., Puk, K.M., and Reade, W., Laboratory earthquake forecasting: A machine learning competition, Proc. Natl. Acad. Sci. U. S. A., 2021, vol. 118, no. 5, artic. e2011362118. https://doi.org/pnas.2011362118

  113. Kachanov, M., Effective elastic properties of cracked solids: critical review of some basic concepts, Appl. Mech. Rev., 1992, vol. 45, no. 8, pp. 304–335. https://doi.org/10.1115/1.3119761

    Article  Google Scholar 

  114. Kaneko, Y., Fukuyama, E., and Hamling, I.J., Slip-weakening distance and energy budget inferred from near-fault ground deformation during the 2016 Mw 7.8 Kaikoura earthquake, Geophys. Res. Lett., 2017, vol. 44, no. 10, pp. 4765–4773. https://doi.org/10.1002/2017GL073681

    Article  Google Scholar 

  115. Kato, A. and Ben-Zion, Y., The generation of large earthquakes, Nat. Rev. Earth Environ., 2021, vol. 2, pp. 26–39. https://doi.org/10.1038/s43017-020-00108-w

    Article  Google Scholar 

  116. Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., and Hirata, N., Propagation of slow slip leading up to the 2011 M w 9.0 Tohoku–Oki earthquake, Science, 2012, vol. 335, no. 6069, pp. 705–708. https://doi.org/10.1126/science.1215141

    Article  Google Scholar 

  117. Kato, A., Fukuda, J., Kumazawa, T., and Nakagawa, S., Accelerated nucleation of the 2014 Iquique, Chile M w 8.2 earthquake, Sci. Rep., 2016, vol. 6, artic. 24792. https://doi.org/10.1038/srep24792

  118. Ke, C.-Y., McLaskey, G.C., and Kammer, D.S., Rupture termination in laboratory-generated earthquakes, Geophys. Res. Lett., 2018, vol. 45, no. 23, pp. 12,784–12,792. https://doi.org/10.1029/2018GL080492

    Article  Google Scholar 

  119. Kelly, C.M., Rietbrock, A., Faulkner, D.R., and Nadeau, R.M., Temporal changes in attenuation associated with the 2004 M 6.0 Parkfield earthquake, J. Geophys. Res.: Solid Earth, 2013, vol. 118, pp. 630–645. https://doi.org/10.1002/jgrb.50088

    Article  Google Scholar 

  120. Keren, T.T. and Kirkpatrick, J.D., The damage is done: low fault friction recorded in the damage zone of the shallow Japan Trench décollement, J. Geophys. Res., 2016, vol. 121, no. 5, pp. 3804–3824.

    Article  Google Scholar 

  121. King, G.C.P., Stein, R.S., and Lin, J., Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am., 1994, vol. 84, pp. 935–953.

    Google Scholar 

  122. Kirkpatrick, J.D., Rowe, C., White, J.C., and Brodsky, E.E., Silica gel formation during fault slip: Evidence from the rock record, Geology, 2013, vol. 41, no. 9, pp. 1015–1018. https://doi.org/10.1130/G34483.1

    Article  Google Scholar 

  123. Kirkpatrick, J.D., Rowe, C.D., Ujiie, K., Moore, J.C., Regalla, C., Remitti, F., Toy, V., Wolfson-Schwehr, M., Kameda, J., Bose, S., and Chester, F.M., Structure and lithology of the Japan Trench subduction plate boundary fault, Tectonics, 2015, vol. 34, pp. 53–69. https://doi.org/10.1002/2014TC003695

    Article  Google Scholar 

  124. Kissin, I.G., Flyuidy v zemnoi kore. Geofizicheskie i tektonicheskie aspekty (Fluids in the Earth’s crust. Geophysical and Tectonic Aspects), Moscow: Nauka, 2015.

  125. Kocharyan, G.G., Geomekhanika razlomov (Geomechanics of Faults), Moscow: GEOS, 2016.

  126. Kocharyan, G.G. and Kishkina, S.B., Physical mesomechanics of earthquake source, Fiz. Mezomekh., 2020, vol. 23, no. 6, pp. 9–24.

    Google Scholar 

  127. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Deformation Dynamics of Block Rock Massifs), Moscow: Akademkniga, 2003.

  128. Kocharyan, G.G., Budkov, A.M., and Kishkina, S.B., Initiation of tectonic earthquakes during underground mining, J. Min. Sci., 2018a, vol. 54, no. 4, pp. 561–568.

    Article  Google Scholar 

  129. Kocharyan, G.G., Ostapchuk, A.A., and Pavlov, D.V., Traces of laboratory earthquake nucleation in the spectrum of ambient noise, Sci. Rep., 2018b, vol. 8, artic. 10764. https://doi.org/10.1038/s41598-018-28976-9

  130. Kocharyan, G.G., Ostapchuk, A.A., Pavlov, D.V., and Budkov, A.M., On the prospect of detecting the process of earthquake preparation in the spectrum of seismic noise: a laboratory experiment, Izv. Phys. Solid Earth, 2018c, vol. 54, no. 6, pp. 914–925.

    Article  Google Scholar 

  131. Kocharyan, G.G., Ostapchuk, A.A., Pavlov, D.V., and Markov, V.K., The effects of weak dynamic pulses on the slip dynamics of a laboratory fault, Bull. Seismol. Soc. Am., 2018d, vol. 108, no. 5B, pp. 2983–2992. https://doi.org/10.1785/0120170363

    Article  Google Scholar 

  132. Kocharyan, G.G., Batuhtin, I.V., Budkov, A.M., Ivanchenko, G.N., Kishkina, S.B., and Pavlov, D.V., On the initiation of dynamic slips on faults by man-made impacts, Izv., Atmos. Ocean. Phys., 2019a, vol. 55, no. 10, pp. 1559–1571. https://doi.org/10.21455/GPB2019.3-7

    Article  Google Scholar 

  133. Kocharyan, G.G., Kishkina, S.B., Budkov, A.M., and Ivanchenko, G.N., On the genesis of the 2013 Bachat earthquake, Geodinam. Tektonofiz., 2019b, vol. 10, no. 3, pp. 741–759. https://doi.org/10.5800/GT-2019-10-3-0439

    Article  Google Scholar 

  134. Kocharyan, G.G., Kulikov, V.I., and Pavlov, D.V., Impact of massive blasts on stability of tectonic faults, J. Min. Sci., 2019c, vol. 55, no. 6, pp. 905–913. https://doi.org/10.15372/FTPRPI20190605

    Article  Google Scholar 

  135. Kolyukhin, D. and Torabi, A., Statistical analysis of the relationships between faults attributes, J. Geophys. Res., 2012, vol. 117, Paper ID B05406. https://doi.org/10.1029/2011JB008880

  136. Kostrov, B.V., Mekhanika ochaga tektonicheskogo zemletryaseniya (Mechanics of the Source of a Tectonic Earthquake), Moscow: Nauka, 1975.

  137. Kostrov, B.V. and Das, Sh., Principles of Earthquake Source Mechanics, Cambridge: Cambridge Univ. Press, 2005.

    Google Scholar 

  138. Kuzmin, Yu.O., Recent anomalous surface deformation in fault zones: shear or tensile faulting?, Geodinam. Tektonofiz., 2018a, vol. 9, no. 3, pp. 967–987.

    Article  Google Scholar 

  139. Kuzmin, Yu.O., Recent geodynamics of tensile faults, Izv. Phys. Solid Earth, 2018b, vol. 54, no. 6, pp. 886–903.

    Article  Google Scholar 

  140. Kuzmin, Yu.O., Induced deformations of fault zones, Izv. Phys. Solid Earth, 2019, vol. 55, no. 5, pp. 753–765.

    Article  Google Scholar 

  141. Kuzmin, Yu.O., Recent geodynamics and slow deformation waves, Izv. Phys. Solid Earth, 2020, vol. 56, no. 4, pp. 595–603.

    Article  Google Scholar 

  142. Lapusta, N. and Rice, J.R., Nucleation and early seismic propagation of small and large events in a crustalearthquake model, J. Geophys. Res.: Solid Earth, 2003, vol. 108, no. B4, artic. 2205.

  143. Leclere, H., Faulkner, D., Llana-Funez, S., Bedford, J., and Wheeler, J., Reaction fronts, permeability and fluid pressure development during dehydration reactions, Earth Planet. Sci. Lett., 2018, vol. 496, pp. 227–237. https://doi.org/10.1016/j.epsl.2018.05.005

    Article  Google Scholar 

  144. Li, H., Wang, H., Xu, Z., Si, J., Pei, J., Li, T., Huang, Y., Songe, S.-R., Kuoe, L.-W., Sunac, Z., Chevalier, M.-L., and Liu, D., Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan earthquake fault scientific drilling project Hole-1 (WFSD-1), Tectonophysics, 2013, vol. 584, pp. 23–42.

    Article  Google Scholar 

  145. Li, Y.G., Chen, P., Cochran, E.S., Vidale, J.E., and Burdette, T., Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M 6.0 Parkfield earthquake, Bull. Seismol. Soc. Am., 2006, vol. 96, no. 4B, pp. 349–363.

    Article  Google Scholar 

  146. Li, Z. and Zhou, B., Influence of fault steps on rupture termination of strike-slip earthquake faults, J. Seismol., 2018, vol. 22, pp. 487–498. https://doi.org/10.1007/s10950-017-9719-4

    Article  Google Scholar 

  147. Lin, A., Thermal pressurization and fluidization of pulverized cataclastic rocks formed in seismogenic fault zones, J. Struct. Geol., 2019, vol. 125, pp. 278–284.

    Article  Google Scholar 

  148. Lin, A. and Nishiwaki, T., Repeated seismic slipping events recorded in a fault gouge zone: Evidence from the Nojima fault drill holes, SW Japan, Geophys. Res. Lett., 2019, vol. 46, pp. 1276–1283. https://doi.org/10.1029/2019GL081927

    Article  Google Scholar 

  149. Lin, J.W., An empirical correlation between the occurrence of earthquakes and typhoons in Taiwan: a statistical multivariate approach, Nat. Hazards, 2013, vol. 65, no. 1, pp. 605–634.

    Article  Google Scholar 

  150. Lin, Y.-Y. and Lapusta, N., Microseismicity Simulated on asperity-like fault patches: on scaling of seismic moment with duration and seismological estimates of stress drops, Geophys. Res. Lett., 2018, vol. 45, no. 16, pp. 8145–8155. https://doi.org/10.1029/2018GL078650

    Article  Google Scholar 

  151. Liu, C.-C., Linde, A.T., and Sacks, I.S., Slow earthquakes triggered by typhoons, Nature, 2009, vol. 459, pp. 833–836.

    Article  Google Scholar 

  152. Liu, Y. and Rice, J.R., Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences, J. Geophys. Res., 2005, vol. 110, Paper ID B08307. https://doi.org/10.1029/2004JB003424

  153. Liu, Y. and Rubin, A.M., Role of fault gouge dilatancy on aseismic deformation transients, J. Geophys. Res., 2010, vol. 115, Paper ID B10414. https://doi.org/10.1029/2010JB007522

  154. Lockner, D.A., Morrow, C., Moore, D., and Hickman, S., Low strength of deep San Andreas fault gouge from SAFOD core, Nature, 2011, vol. 472, pp. 82–85. https://doi.org/10.1038/nature09927

    Article  Google Scholar 

  155. Manighetti, I., Campillo, M., Bouley, S., and Cotton, F., Earthquake scaling, fault segmentation, and structural maturity, Earth Planet. Sci. Lett., 2007, vol. 253, pp. 429–438. https://doi.org/10.1016/j.epsl.2006.11.004

    Article  Google Scholar 

  156. Marone, C., Laboratory–derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 1998, vol. 26, no. 1, pp. 643–696. https://doi.org/10.1146/annurev.earth.26.1.643

    Article  Google Scholar 

  157. Marone, C., Vidale, J.E., and Ellsworth, W.L., Fault healing inferred from time dependent variations in source properties of repeating earthquakes, Geophys. Res. Lett., 1995, vol. 22, pp. 3095–3098.

    Article  Google Scholar 

  158. Maurer, J. and Segall, P., Magnitudes of induced earthquakes in low-stress environments, Bull. Seismol. Soc. Am., 2018, vol. 108, no. 3A, pp. 1087–1106. https://doi.org/10.1785/0120170295

    Article  Google Scholar 

  159. Mavrommatis, A.P., Segall, P., Uchida, N., and Johnson, K.M., Long-term acceleration of aseismic slip preceding the Mw 9 Tohoku-oki earthquake: constraints from repeating earthquakes, Geophys. Res. Lett., 2015, vol. 42, pp. 9717–9725.

    Article  Google Scholar 

  160. McGarr, A., Maximum magnitude earthquakes induced by fluid injection, J. Geophys. Res.: Solid Earth, 2014, vol. 119, pp. 1008–1019.

    Article  Google Scholar 

  161. McGuire, J.J., Boettcher, M.S., and Jordan, T.H., Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults, Nature, 2005, vol. 434, pp. 457–461.

    Article  Google Scholar 

  162. Melosh, H.J., Dynamical weakening of faults by acoustic fluidization, Nature, 1996, vol. 379, pp. 601–606.

    Article  Google Scholar 

  163. Meng, H. and Ben-Zion, Y., Detection of small earthquakes with dense array data: Example from the San Jacinto fault zone, southern California, Geophys. J. Int., 2017, vol. 212, no. 1, pp. 442–457.

    Article  Google Scholar 

  164. Metois, M., Vigny, C., and Socquet, A., Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18° S), Pure Appl. Geophys., 2017, vol. 173, no. 5, pp. 1431–1449. https://doi.org/10.1007/s00024-016-1280-5

    Article  Google Scholar 

  165. Mignan, A., The debate on the prognostic value of earthquake foreshocks: A meta-analysis, Sci. Rep., 2014, vol. 4, no. 1, artic. 4099. https://doi.org/10.1038/srep04099

  166. Moore, D.E. and Lockner, D.A., Friction of the smectite clay montmorillonite: A review and interpretation of data, in The Seismogenic Zone of Subduction Thrust Faults, Dixon, T.H. and Moore, J.C., Eds., New York: Columbia Univ. Press, 2007, pp. 317–345, http://cup.columbia.edu/book/the-seismogenic-zone-of-subduction-thrust-faults/9780231138666

    Google Scholar 

  167. Moore, D.E. and Rymer, M.J., Talc-bearing serpentinite and the creeping section of the San Andreas fault, Nature, 2007, vol. 448, no. 7155, pp. 795–797.

    Article  Google Scholar 

  168. Morozov, Yu.A., Bukalov, S.S., and Leites, L.A., Mechanochemical transformation of shungite in the dynamic slip zone, Geophys. Res., 2016, vol. 17, no. 2, pp. 5–18.

    Google Scholar 

  169. Morozov, Yu.A., Yudin, D.S., Travin, A.V., Matveev, M.A., Kulakovskiy, A.L., and Smulskaya, A.I., The first discovery of pseudotachylytes in the Paleoproterozoic Ladoga zonal metamorphosed complex of Fennoscandia and their 40Ar/39Ar dating, Dokl. Earth Sci., 2020, vol. 493, no. 1, pp. 485–489.

    Article  Google Scholar 

  170. Mubassarova, V.A., Bogomolov, L.M., Zakupin, A.S., and Panteleev, I.A., Acoustic emission and strain responses of rocks triggered by electromagnetic impact: A review. Part 1, Geosist. Perekhodnykh Zon, 2019, vol. 3, no. 2, pp. 155–174.

    Google Scholar 

  171. Nakamura, Y., Muto, J., Nagahama, H., Shimizu, I., Miura, T., and Arakawa, I., Amorphization of quartz by friction: Implication to silica gel lubrication of fault surfaces, Geophys. Res. Lett., 2012, vol. 39, Paper ID L21303. https://doi.org/10.1029 /2012GL053228

  172. Niemeijer, A., Marone, C., and Elsworth, D., Healing of simulated fault gouges aided by pressure solution: results from rock analogue experiments, J. Geophys. Res., 2008, vol. 113, Paper ID B04204. https://doi.org/10.1029/2007JB005376

  173. Noda, H., Frictional constitutive law at intermediate slip rates accounting for flash heating and thermally activated slip process, J. Geophys. Res., 2008, vol. 113, Paper ID B09302. https://doi.org/10.1029/2007JB005406

  174. Noda, H., Dunham, E.M., and Rice, J.R., Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels, J. Geophys. Res.: Solid Earth, 2009, vol. 114, no. B7, Paper ID B07302. https://doi.org/10.1029/2008JB006143

  175. Noda, H., Lapusta, N., and Kanamori, H., Comparison of average stress drop measures for ruptures with heterogeneous stress change and implications for earthquake physics, Geophys. J. Int., 2013, vol. 193, no. 3, pp. 1691–1712. https://doi.org/10.1093/gji/ggt074

    Article  Google Scholar 

  176. Novikov, V.A., Sorokin, V.M., and Yashchenko, A.K., Can a solar flare trigger an earthquake?, Vestn. Ob”edin. Inst. Vys. Temp. RAN, 2019, vol. 3, no. 2, pp. 15–21.

    Google Scholar 

  177. Obara, K. and Kato, A., Connecting slow earthquakes to huge earthquakes, Science, 2016, vol. 353, pp. 253–257. https://doi.org /10.1126/science.aaf1512

    Article  Google Scholar 

  178. Osokina, D.N., On hierarchical properties of tectonic stress and strain field in the Earth’s crust, in Polya napryazhenii i deformatsii v zemnoi kore (Stress and Strain Fields in the Earth’s Crust), Bulanzhe Yu.D., Ed., Moscow: Nauka, 1987, pp. 136–151.

  179. Oth, A., On the characteristics of earthquake stress release variations in Japan, Earth Planet. Sci. Lett., 2013, vol. 377, pp. 132–141.

    Article  Google Scholar 

  180. Parsons, T. and Velasco, A.A., On near-source earthquake triggering, J. Geophys. Res., 2009, vol. 114, B10307. https://doi.org/10.1029/2008JB006277

    Article  Google Scholar 

  181. Peng, Z. and Gomberg, J., An integrated perspective of the continuum between earthquakes and slow-slip phenomena, Nat. Geosci., 2010, vol.3, pp. 599–607. https://doi.org/10.1038/ngeo940

    Article  Google Scholar 

  182. Perrin, C., Manighetti, I., Ampuero, J.P., Cappa, F., and Gaudemer, Y., Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth, J. Geophys. Res., 2016, vol. 121, no. 5, pp. 3666–3685.

    Article  Google Scholar 

  183. Perry, S.M., Lambert, V., and Lapusta, N., Nearly Magnitude-invariant stress drops in simulated crack-like earthquake sequences on rate-and-state faults with thermal pressurization of pore fluids, J. Geophys. Res.: Solid Earth, 2020, vol. 125, no. 3, artic. e2019JB018597. https://doi.org/10.1029/2019JB018597

  184. Preuss, S., Ampuero, J. P., Gerya, T., and van Dinther, Y., Characteristics of earthquake ruptures and dynamic off-fault deformation on propagating faults, Solid Earth, 2020, vol. 11, pp. 1333–1360. https://doi.org/10.5194/se-11-1333-2020

    Article  Google Scholar 

  185. Proctor, B., Mitchell, T.M., Hirth, G., Goldsby, D., Zorzi, F., and Di Toro, G., Dynamic weakening of serpentinite gouges and bare-surfaces at seismic slip rates, J. Geophys. Res., 2014, vol. 119, pp. 8107–8131. https://doi.org/10.1002/2014JB011057

    Article  Google Scholar 

  186. Rabinowitz, H.S., Savage, H., Plank, T., Polissar, P.J., Kirkpatrick, J.D., and Rowe, C., Multiple major faults at the Japan Trench: Chemostratigraphy of the plate boundary at IODP Expedition 343: JFAST, Earth Planet. Sci. Lett., 2015, vol. 423, pp. 57–66.

    Article  Google Scholar 

  187. Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., Lhomme, T., Walpersdorf, A., Cabral Cano, E., and Campillo, M., Triggering of the 2014 Mw 7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico, Nat. Geosci., 2016, vol. 9, pp. 829–833. https://doi.org/10.1038 /ngeo2817

    Article  Google Scholar 

  188. Rats, M.V. and Chernyshev, S.N., Treshchinovatost’ i svoistva treshchinovatykh gornykh porod (Fracturing and Properties of Fractured Rocks), Moscow: Nedra, 1970.

  189. Rattez, H. and Veveakis, M., Weak phases production and heat generation control fault friction during seismic slip, Nat. Commun., 2020, vol. 11, no. 1, artic. 350. https://doi.org/10.1038/s41467-019-14252-5

  190. Reches, Z. and Lockner, D.A., Fault weakening and earthquake instability by powder lubrication, Nature, 2010, vol. 467, pp. 452–455. https://doi.org/10.1038/nature09348.39

    Article  Google Scholar 

  191. Ren, C.X., Hulbert, C., Johnson, P.A., and Rouet-Leduc, B., Machine learning and fault rupture: a review, Ch. 2 of Advances in Geophysics, vol. 61: Machine Learning and Artificial Intelligence in Geosciences, Moseley, B. and Krischer, L., Eds., Amsterdam: Elsevier, 2020, pp. 57–107.

  192. Rice, J.R., Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault, Ch. 20 of Fault Mechanics and Transport Properties of Rocks, Evans, B. and Wong, T.-F., Eds., New York: Academic Press, 1992, pp. 475–504.

  193. Rice, J.R., Heating and weakening of faults during earthquake slip, J. Geophys. Res., 2006, vol. 111, no. B5, Paper ID B05311. https://doi.org/10.1029/2005JB004006

  194. Rice, J.R., Lapusta, N., and Ranjith, K., Rate and state dependent friction and the stability of sliding between elastically deformable solids, J. Mech. Phys. Solids, 2001, vol. 49, no. 9, pp. 1865–1898.

    Article  Google Scholar 

  195. Richard, J., Doan, M.L., Gratier, J.P., and Renard, F., Microstructures induced in porous limestone by dynamic loading, and fracture healing: an experimental approach, Pure Appl. Geophys., 2015, vol. 172, no. 5, pp. 1269–1290. https://doi.org/10.1007/s00024-014-0958-9

    Article  Google Scholar 

  196. Riga, V. and Turuntaev, S., Modeling of fault deformation driven by fluid injection, in Trigger effects in Geosystems, Springer Proceedings in Earth and Environmental Sciences Ser., Kocharyan, G. and Lyakhov, A., Eds., Cham: Springer, 2019, pp. 279–288.

  197. Riznichenko, Yu.V., Problemy seismologii: Izbrannye trudy (Problems of Seismology: Selected Works), Moscow: Nauka, 1985.

  198. Rodionov, V.N., Sizov, I.A., and Tsvetkov, V.M., Osnovy geomekhaniki (Introduction to Geomechanics), Moscow: Nedra, 1986.

  199. Rodkin, M.V. and Rundkvist, D.V., Geoflyuidogeodinamika. Prilozhenie k seismologii, tektonike, protsessam rudo- i neftegeneza (Geofluid Geodynamics: Applications to Seismology, Tectonics, and Ore and Oil Formation Processes), Dolgoprudnyi: Intellekt, 2017.

  200. Roeloffs, E.A., Evidence for aseismic deformation rate changes prior to earthquakes, Annu. Rev. Earth Planet. Sci., 2006, vol. 35, pp. 591–627. https://doi.org/10.1146/annurev.earth.34.031405.124947

    Article  Google Scholar 

  201. Roesner, A., Ikari, M.J., Saffer, D.M., Stanislowski, K., Eijsink, A.M., and Kopf, A.J., Friction experiments under in-situ stress reveal unexpected velocity-weakening in Nankai accretionary prism samples, Earth Planet. Sci. Lett., 2020, vol. 538, artic. 116180. https://doi.org/10.1016/j.epsl.2020

  202. Romanet, P., Bhat, H.S., Jolivet, R., and Madariaga, R., Fast and slow slip events emerge due to fault geometrical complexity, Geophys. Res. Lett., 2018, vol. 45, no. 10, pp. 4809–4819. https://doi.org/10.1029/2018GL077579

    Article  Google Scholar 

  203. Roten, D., Olsen, K.B., and Day, S.M., Off-fault deformations and shallow slip deficit from dynamic rupture simulations with fault zone plasticity, Geophys. Res. Lett., 2017, vol. 44, no. 15, pp. 7733–7742. https://doi.org/10.1002/2017GL074323

    Article  Google Scholar 

  204. Rowe, C.D., Ross, C., Swanson, M.T., Pollock, S., Backeberg, N.R., Barshi, N.A., et al., Geometric complexity of earthquake rupture surfaces preserved in pseudotachylyte networks, J. Geophys. Res.: Solid Earth, 2018, vol. 123, pp. 7998–8015. https://doi.org/10.1029/2018JB016192

    Article  Google Scholar 

  205. Ruina, A., Slip instability and state variable laws, J. Geophys. Res., 1983, vol. 88, no. B12, pp. 10,359–10,370. https://doi.org/10.1029/JB088iB12p10359

    Article  Google Scholar 

  206. Ruzhich, V.V., Medvedev, V.Ya., and Ivanova, L.A., Healing of seismogenic discontinuities and the recurrence of earthquakes, in Seismichnost’ baikal’skogo rifta. Prognosticheskie aspekty (Seismicity of the Baikal Rift. Prognostic Aspects), Pavlov, O.V. and Misharina, A.L., Eds., Novosibirsk: Nauka, Sib. Otd., 1990, pp. 44–50.

  207. Ruzhich, V.V., Kocharyan, G.G., Savelieva, V.B., and Travin, A.V., On the structure and formation of earthquake sources in the faults located in the subsurface and deep levels of the crust. Part II. Deep level, Geodinam. Tektonofiz., 2018a, vol. 9, no. 3, pp. 1039–1061. https://doi.org/10.5800/GT-2018-9-3-0383

    Article  Google Scholar 

  208. Ruzhich, V.V., Kocharyan, G.G., Travin, A.V., Savel’eva, V.B., Ostapchuk, A.A., Rasskazov, S.V., Yasnygina, T.A., and Yudin, D.S., Determination of the PT conditions that accompanied a seismogenic slip along a deep segment of the marginal suture of the Siberian Craton, Dokl. Earth Sci., 2018b, vol. 481, no. 2, pp. 1017–1020.

    Article  Google Scholar 

  209. Ruzhich, V.V., Vakhromeev, A.G., Levina, E.A., Sverkunov, S.A., and Shil’ko, E.V., Seismic activity control in tectonic fault zones using vibrations and deep well fluid injection, Fiz. Mezomekh., 2020, vol. 23, no. 3, pp. 55–69.

    Google Scholar 

  210. Ryan, K.L., Rivière, J., and Marone, C., The role of shear stress in fault healing and frictional aging, J. Geophys. Res.: Solid Earth, 2018, vol. 123, pp. 10,479–10,495. https://doi.org/10.1029/2018JB016296

    Article  Google Scholar 

  211. Saffer, D.M. and Tobin, H.J., Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure, Annu. Rev. Earth Planet. Sci., 2011, vol. 39, pp. 157–186.

    Article  Google Scholar 

  212. Sagy, A., Brodsky, E.E., and Axen, G.J., Evolution of fault-surface roughness with slip, Geology, 2007, vol. 35, no. 3, pp. 283–286.

    Article  Google Scholar 

  213. Saltykov, V.A., Tidal effects and amplitude-dependent dissipation in seismicity, Fiz. Mezomekh., 2014, vol. 17, no. 5, pp. 103–110.

    Google Scholar 

  214. Samuelson, J., Elsworth, D., and Marone, C., Shear-induced dilatancy of fluid-saturated faults: Experiment and theory, J. Geophys. Res.: Solid Earth, 2009, vol. 114, no. B12, Paper ID B12404. https://doi.org/10.1029/2008jb006273

  215. Savage, H.M. and Brodsky, E.E., Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones, J. Geophys. Res.: Solid Earth, 2011, vol. 116, no. B3, Paper ID B03405. https://doi.org/10.1029/2010JB007665

  216. Schmitt, S.V., Segall, P., and Dunham, E.M., Nucleation and dynamic rupture on weakly stressed faults sustained by thermal pressurization, J. Geophys. Res.: Solid Earth, 2015, vol. 120, no. 11, pp. 7606-7640. https://doi.org/10.1002/2015JB012322

    Article  Google Scholar 

  217. Schoenball, M. and Ellsworth, W.L., A systematic assessment of the spatiotemporal evolution of fault activation through induced seismicity in Oklahoma and Southern Kansas, J. Geophys. Res.: Solid Earth, 2017, vol. 122, no. 12, pp. 10,189–10,206.

    Article  Google Scholar 

  218. Scholz, C.H., The Mechanics of Earthquakes and Faulting, 3rd ed., Cambridge: Cambridge Univ. Press, 2019.

    Book  Google Scholar 

  219. Schurr, B., Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., Wang, R., Moreno, M., Bartsch, M., Zhang, Y., Oncken, O., Tilmann F., Dahm T., Victor P., Barrientos S., et al., Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake, Nature, 2014, vol. 512, pp. 299–302. https://doi.org/10.1038/nature13681

    Article  Google Scholar 

  220. Scuderi, M.M., Carpenter, B.M., and Marone, C., Physicochemical processes of frictional healing: Effects of water on stick-slip stress drop and friction of granular fault gouge, J. Geophys. Res.: Solid Earth, 2014, vol. 119, pp. 4090–4105. https://doi.org/10.1002/2013JB010641

    Article  Google Scholar 

  221. Segall, P. and Rice, J.R., Dilatancy, compaction, and slip instability of a fluid-infiltrated fault, J. Geophys. Res., 1995, vol. 100, no. B11, pp. 22155–22171. https://doi.org/10.1029/95JB02403

    Article  Google Scholar 

  222. Seismological Grand Challenges in Understanding Earth’s Dynamic Systems, Lay, T., Ed., Report to the National Science Foundation, IRIS Consortium, 2009.

  223. Seminskii, K.Zh., Vnutrennyaya struktura kontinental’nykh razlomnykh zon. Tektonofizicheskii aspekt (Internal Structure of Continental Fault Zones. Tectonophysical Aspect), Novosibirsk: SO RAN, Geo, 2003.

  224. Shebalin, N.V., Sil’nye zemletryaseniya: Izbrannye trudy (Strong Earthquakes: Selected Works), Moscow: Izd-vo Akad. gorn. nauk, 1997.

  225. Shebalin, P.N. and Baranov, A.A., Aftershock rate changes at different ocean tide heights, Front. Earth Sci., 2020, vol. 8, artic. 559624. https://doi.org/10.3389/feart.2020.559624

  226. Shelly, D.R., Ellsworth, W.L., and Hill, D.P., Fluid-faulting evolution in high definition: connecting fault structure and frequency-magnitude variations during the 2014 Long Valley Caldera, California, earthquake swarm, J. Geophys. Res.: Solid Earth, 2016, vol. 121, no. 3, pp. 1776–1795.

    Article  Google Scholar 

  227. Sherman, S.I., Seismicheskii protsess i prognoz zemletryasenii: tektonofizicheskaya kontseptsiya (Seismic Process and the Forecast of Earthquakes: Tectonophysical Concept), Novosibirsk: Geo, 2014.

  228. Sherman, S.I., Bornyakov, S.A., and Buddo, V.Yu., Oblasti dinamicheskogo vliyaniya razlomov (rezul’taty modelirovaniya) (Areas of Dynamic Influence of Faults (Simulation Results)), Novosibirsk: Nauka, Sib. Otd., 1983.

  229. Shi, Z. and Day, S.M., Rupture dynamics and ground motion from 3-D rough-fault simulations, J. Geophys. Res., 2013, vol. 118, no. 3, pp. 1122–1141.

    Article  Google Scholar 

  230. Sibson, R.H., Brecciation processes in fault zones, Pure Appl. Geophys., 1986, vol. 124, p. 159–175.

    Article  Google Scholar 

  231. Sibson, R.H., Thickness of the seismic slip zone, Bull. Seismol. Soc. Am., 2003, vol. 93, no. 3, pp. 1169–1178. https://doi.org/10.1785/0120020061

    Article  Google Scholar 

  232. Sibson, R.H., The scope of earthquake geology, in Geol. Soc., London, Spec. Publ., vol. 359: Geology of the Earthquake Source: A Volume in Honour of Rick Sibson, Fagereng, A., Toy, V.G., and Rowland, J.V., Eds., London: Geol. Soc., 2011, pp. 319–331.

  233. Smirnov, V.B., Ponomarev, A.V., Benard, P., and Patonin, A.V., Regularities in transient modes in the seismic process according to the laboratory and natural modeling, Izv. Phys. Solid Earth, 2010, vol. 46, no. 2, pp. 104–135.

    Article  Google Scholar 

  234. Smirnov, V.B., Srinagesh, D., Ponomarev, A.V., Chadha, R., Mikhailov, V.O., Potanina, M.G., Kartashov, I.M., and Stroganova, S.M., The behavior of seasonal variations in induced seismicity in the Koyna–Warna region, Western India, Izv. Phys. Solid Earth, 2017, vol. 53, no. 4, pp. 530–539.

    Article  Google Scholar 

  235. Smirnov, V.B., Mikhailov, V.O., Ponomarev, A.V., Arora, K., Chadha, R.K., Srinagesh, D., and Potanina, M.G., On the dynamics of the seasonal components of induced seismicity in the Koyna–Warna region, Western India, Izv. Phys. Solid Earth, 2018, vol. 54, no. 4, pp. 632–640.

    Article  Google Scholar 

  236. Smirnov, V.B., Ponomarev, A.V., Stanchits, S.A., Potanina, M.G., Patonin, A.V., Dresen, G., Narteau, C., Bernard, P., and Stroganova, S.M., Laboratory modeling of aftershock sequences: stress dependences of the Omori and Gutenberg–Richter parameters, Izv. Phys. Solid Earth, 2019, vol. 55, no. 1, pp. 124–137.

    Article  Google Scholar 

  237. Sobolev, G.A., Avalanche unstable fracturing formation model, Izv. Phys. Solid Earth, 2019, vol. 55, no. 1, pp. 138–151.

    Article  Google Scholar 

  238. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Physics of Earthquakes and Precursors), Moscow: Nauka, 2003.

  239. Sobolev, G.A. and Ponomarev, A.V., Dynamics of fluid-triggered fracturing in the models of a geological medium, Izv. Phys. Solid Earth, 2011, vol. 47, no. 10, pp. 902–918.

    Article  Google Scholar 

  240. Sobolev, G.A. and Zakrzhevskaya, N.A., Local tectonic deformations and nearby contemporaneous earthquakes, J. Volcanol. Seismol., 2020, vol. 14, no. 3, pp. 137–144.

    Article  Google Scholar 

  241. Sobolev, G.A., Zakrzhevskaya, N.A., and Sobolev, D.G., The effects of cyclones on seismicity, J. Volcanol. Seismol., 2012, vol. 6, no. 2, pp. 89–99.

    Article  Google Scholar 

  242. Sobolev, G.A., Kireenkova, S.M., Morozov, Yu.A., Smul’skaya, A.I., Vettegren’, V.I., Kulik, B.V., Mamalimov, R.I., and Shcherbakov, I.P., Nanokristally v gornykh porodakh (Nanocrystals in Rocks), Moscow: GEOS, 2016a.

  243. Sobolev, G.A., Zakrzhevskaya, N.A., and Sobolev, D.G., Triggering of repeated earthquakes, Izv. Phys. Solid Earth, 2016b, vol. 52, no. 2, pp. 155–172.

    Article  Google Scholar 

  244. Sobolev, G.A., Zakrzhevskaya, N.A., Migunov, I.N., Sobolev, D.G., and Boiko, A.N., Effect of magnetic storms on low-frequency seismic noise, Izv. Phys. Solid Earth, 2020, vol. 56, no. 3, pp. 291–315.

    Article  Google Scholar 

  245. Socquet, A., Valdes, J.P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega-Culaciati, F., Carrizo, D., and Norabuena, E., An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust, Geophys Res. Lett., 2017, vol. 44, pp. 4046–4053. https://doi.org/10.1002/2017GL073023

    Article  Google Scholar 

  246. Stefanov, Yu.P., Dilatation and compaction modes of deformation in localized shear zones, Fiz. Mezomekh., 2010, vol. 13, no. S1, (Special Issue), pp. 44–52.

  247. Sutherland, R., Toy, V.G., Townend, J., Cox, S.C., Eccles, J.D., Faulkner, D.R., Prior, D.J., Norris, R.J., Mariani, E., Boulton, C., Carpenter, B.M., Menzies, C.D., Little, T.A., Hasting, M., De Pascale, G.P., et al., Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand, Geology, 2012, vol. 40, no. 12, pp. 1143–1146.

    Article  Google Scholar 

  248. Sutherland, R., Townend, J., Toy, V.G., Upton, P., Coussens, J., Allen, M., et al., Extreme hydrothermal conditions at an active plate-bounding fault, Nature, 2017, vol. 546, no. 7656, pp. 137–140. https://doi.org/10.1038/nature22355

    Article  Google Scholar 

  249. Sycheva, N.A. and Bogomolov, L.M., On the stress drop in North Eurasia earthquakes source-sites versus specific seismic energy, Geosyst. Transition Zones, 2020, vol. 4, no. 4, pp. 393–446.

    Article  Google Scholar 

  250. Tal, Y. and Hager, B.H., The slip behavior and source parameters for spontaneous slip events on rough faults subjected to slow tectonic loading, J. Geophys. Res.: Solid Earth, 2018, vol. 123, no. 2, pp. 1810–1823. https://doi.org/10.1002/2017JB014737

    Article  Google Scholar 

  251. Tanikawa, W. and Shimamoto, T., Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake, J. Geophys. Res., 2009, vol. 114, no. B1, Paper ID B01402. https://doi.org/10.1029/2008JB005750

  252. Tape, C., Holtkamp, S., Silwal, V., Hawthorne, J., Kaneko, Y., Ampuero, J.P., Ji, C., Ruppert, N., Smith, K., and West, M.E., Earthquake nucleation and fault slip complexity in the lower crust of central Alaska, Nat. Geosci., 2018, vol. 11, pp. 536–541. https://doi.org/10.1038/s41561-018-0144-2

    Article  Google Scholar 

  253. Tarasov, N.T. and Tarasova, N.V., Influence of electromagnetic fields and explosions on seismicity, geodynamic consequences, Mater. V Mezhdunar. konf.: Triggernye effekty v geosistemakh (Proc. V Int. Conf.: Trigger Effects in Geosystems), Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow, 2019, Moscow: TORUS PRESS, 2019, pp. 113–122.

  254. Tenthorey, E., Cox, S.F., and Todd, H.F., Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones, Earth Planet. Sci. Lett., 2003, vol. 206, pp. 161–172.

    Article  Google Scholar 

  255. Thomas, M.Y. and Bhat, H.S., Dynamic evolution of off-fault medium during an earthquake: A micromechanics based model, Geophys. J. Int., 2018, vol. 214, no. 2, pp. 1267–1280. https://doi.org/10.1093/GJI/GGY129

    Article  Google Scholar 

  256. Tobin, H., Hirose, T., Ikari, M., et al., NanTroSEIZE Plate Boundary Deep Riser 4: Nankai Seismogenic/Slow Slip Megathrust, Proc. Int. Ocean Discovery Program, vol. 358, College Station: International Ocean Discovery Program, 2020. https://doi.org/10.14379/iodp.proc.358.101.2020

  257. Townend, J. and Zoback, M.D., How faulting keeps the crust strong, Geology, 2000, vol. 28, pp. 399–402. https://doi.org/10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2

    Article  Google Scholar 

  258. Trippetta, F., Collettini, C., Meredith, P.G., and Vinciguerra, S., Evolution of the elastic moduli of seismogenic Triassic Evaporites subjected to cyclic stressing, Tectonophysics, 2013, vol. 592, pp. 67–79. https://doi.org/10.1016/j.tecto.2013.02.011

    Article  Google Scholar 

  259. Trugman, D.T. and Shearer, P.M., Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California, J. Geophys. Res.: Solid Earth, 2017, vol. 122, pp. 2890–2910. https://doi.org/10.1002/2017JB013971

    Article  Google Scholar 

  260. Uchida, N. and Burgmann, R., Repeating earthquakes, Annu. Rev. Earth Planet. Sci., 2019, vol. 47, pp. 305–332.

    Article  Google Scholar 

  261. Uchida, N., Iinuma, T., Nadeau, R.M., Bürgmann, R., and Hino, R., Periodic slow slip triggers megathrust zone earthquakes in northeastern Japan, Science, 2016, vol. 351, pp. 488–492. https://doi.org/10.1126/science.aad3108

    Article  Google Scholar 

  262. Uchide, T., Shearer, P.M., and Imanishi, K., Stress drop variations among small earthquakes before the 2011 Tohoku-oki, Japan, earthquake and implications for the main shock, J. Geophys. Res.: Solid Earth, 2014, vol. 119, no. 9, pp. 7164–7174. https://doi.org/10.1002/2014JB010943

    Article  Google Scholar 

  263. Ujiie, K., Tanaka, H., Saito, T., Tsutsumi, A., Mori, J.J., Kameda, J., Brodsky, E.E., Chester, F.M., Eguchi, N., Toczko, S., and Expedition 343, 343T Collab., Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments, Science, 2013, vol. 342, no. 6163. pp. 1211–1214. https://doi.org/10.1126/science.1243485

    Article  Google Scholar 

  264. Vettegren, V.I., Arora, K., Ponomarev, A.V., Mamalimov, R.I., Shcherbakov, I.P., and Kulik, V.B., Friction-induced changes in the surface structure of basalt and granite, Phys. Solid State, 2018a, vol. 60, no. 5, pp. 975–980.

    Article  Google Scholar 

  265. Vettegren, V.I., Ponomarev, A.V., Mamalimov, R.I., Shcherbakov, I.P., Kulik, V.B., and Ermakov, V.A., Structural changes in the surface of a heterogeneous body (xenolite) under friction, Phys. Solid State, 2018b, vol. 60, no. 10, pp. 2026–2029.

    Article  Google Scholar 

  266. Vettegren, V.I., Ponomarev, A.V., Kulik, V.B., Mamalimov, R.I., and Shcherbakov, I.P., Frictional failure of quartz diorite, Geofiz. Issled., 2020, vol. 21, no. 4, pp. 35–50.

    Google Scholar 

  267. Vidale, J.E. and Li, Y.G., Damage to the shallow Landers fault from the nearby Hector Mine earthquake, Nature, 2003, vol. 421, pp. 524–526.

    Article  Google Scholar 

  268. Viesca, R.C. and Garagash, D.I., Ubiquitous weakening of faults due to thermal pressurization, Nat. Geosci., 2015, vol. 8, pp. 875–879. https://doi.org/10.1038/ngeo2554

    Article  Google Scholar 

  269. Vorobieva, I., Shebalin, P., and Narteau, C., Condition of occurrence of large man-made earthquakes in the zone of oil production, Oklahoma, Izv. Phys. Solid Earth, 2020, vol. 56, no. 6, pp. 911–919.

    Article  Google Scholar 

  270. Wei, S., Avouac, J.-P., Hudnut, K.W., Donnellan, A., Parker, J.W., Graves, R.W., Helmberger, D., Fielding, E., Liu, Z., Cappa, F., and Eneva, M., The 2012 Brawley swarm triggered by injection-induced aseismic slip, Earth Planet. Sci. Lett., 2015, vol. 422, pp. 115–122.

    Article  Google Scholar 

  271. Weingarten, M., Ge, S., Godt, J.W., Bekins, B.A., and Rubinstein, J.L., High-rate injection is associated with the increase in U.S. mid-continent seismicity, Science, 2015, vol. 348, no. 6241, pp. 1337–1340.

    Article  Google Scholar 

  272. Wesnousky, S.G., Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture, Bull. Seismol. Soc. Am., 2008, vol. 98, no. 4, pp. 1609–1632. https://doi.org/10.1785/0120070111

    Article  Google Scholar 

  273. Wibberley, C.A.J. and Shimamoto, T., Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan, J. Struct. Geol., 2003, vol. 25, no. 1, pp. 59–78. https://doi.org/10.1016/S0191-8141(02)00014-7

    Article  Google Scholar 

  274. Wibberley, C.A.J., Yielding, G., and Di Toro, G., Recent advances in the understanding of fault zone internal structure: a review, Geol. Soc., London, Spec. Publ., 2008, vol. 299, no. 1, pp. 5–33. https://doi.org/10.1144/sp299.2

    Article  Google Scholar 

  275. Wilson, J.E., Chester, J.S., and Chester, F.M., Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas System, California, J. Struct. Geol., 2003, vol. 25, pp. 1855–1873.

    Article  Google Scholar 

  276. Wu, Q., Chapman, M., and Chen, X., Stress-drop variations of induced earthquakes in Oklahoma, Bull. Seismol. Soc. Am., 2018, vol. 108, no. 3A, pp. 1107–1123. https://doi.org/10.1785/0120170335

    Article  Google Scholar 

  277. Xu, Z. and Li, H., The Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, in Earthquake and Disaster Risk: Decade Retrospective of the Wenchuan Earthquake, Li, Y.G., Ed. Ed., Singapore: Springer, 2019, pp. 69–105. https://doi.org/10.1007/978-981-13-8015-0_3

  278. Xue, L., Li, H.-B., Brodsky, E.E., Xu, Z.-Q., Kano, Y., Wang, H., Mori, J.J., Si, J.-L., Pei, J.-L., Zhang, W., Yang, G., Sun, Z.-M., and Huang, Y., Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone, Science, 2013, vol. 340, no. 6140, pp. 1555–1559.

    Article  Google Scholar 

  279. Yang, H., Liu, Y., and Lin, J., Geometrical effects of a subducted seamount on stopping megathrust ruptures, Geophys. Res. Lett., 2013, vol. 40, pp. 2011–2016. https://doi.org/10.1002/grl.50509

    Article  Google Scholar 

  280. Yang, S., Ranjith, P.G., Huang, Y., Yin, P., Jing, H., Gui, Y., and Yu, Q., Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading, Geophys. J. Int., 2015, vol. 201, pp. 662–682.

    Article  Google Scholar 

  281. Yang, T., Dekkers, M.J., and Zhang, B., Seismic heating signatures in the Japan Trench subduction plate-boundary fault zone: evidence from a preliminary rock magnetic “geothermometer,” Geophys. J. Int., 2016, vol. 205, pp. 332–344.

    Article  Google Scholar 

  282. Yasuda, T., Yagi, Y., Mikumo, T., and Miyatake, T., A comparison between Dc'-values obtained from a dynamic rupture model and waveform inversion, Geophys. Res. Lett., 2005, vol. 32, no. 14, Paper ID L14316.

  283. Ye, L., Kanamori, H., and Lay, T., Global variations of large megathrust earthquake rupture characteristics, Sci. Adv., 2018, vol. 4, no. 3, artic. eaao4915. https://doi.org/10.1126/sciadv.aao4915

  284. Yu, C., Zhan, Z., Lindsey, N.J., Ajo-Franklin, J.B., and Robertson, M., The potential of distributed acoustic sensing (DAS) in teleseismic studies: insights from the Goldstone experiment, Geophys. Res. Lett., 2019, vol. 46, pp. 1320–1328. https://doi.org/10.1029/2018GL081195

    Article  Google Scholar 

  285. Zakupin, A.S., Bogomolov, L.M., Mubassarova, V.A., and Il’ichev, P.V., Seismoacoustic responses to high-power electric pulses from well logging data at the Bishkek geodynamical test area, Izv. Phys. Solid Earth, 2014, vol. 50, no. 5, pp. 692–706.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to A.V. Ponomarev, P.N. Shebalin, and V.B. Smirnov for their valuable comments.

Funding

The work was supported by the Russian Foundation for Basic research under project no. 20-15-50255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Kocharyan.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocharyan, G.G. Nucleation and Evolution of Sliding in Continental Fault Zones under the Action of Natural and Man-Made Factors: A State-of-the-Art Review. Izv., Phys. Solid Earth 57, 439–473 (2021). https://doi.org/10.1134/S1069351321040066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321040066

Keywords:

Navigation