Skip to main content
Log in

Synthesis of Novel N-Acylhydrazones Derived from 3,5-Dinitrobenzohydrazide and Evaluation of Their Anticholinesterase and Antioxidant Activities

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: In this study, it was aimed to determine the antioxidant activities and enzyme inhibition properties of newly synthesized N-acylhydrazone compounds (IIIa–IIIp) bearing an aryl sulfonate moiety. Methods: For this purpose, a series of hydrazone derivatives based on 3,5-dinitrobenzohydrazide (I) was synthesized for the first time and characterized by spectrometric methods (FT-IR, 1H NMR and 13C NMR) and elemental analysis. In vitro anticholinesterase activities of novel hydrazone derivatives were evaluated against acetyl- and butyrylcholinesterase (AChE and BChE) at 200 µM concentration. Moreover, the antioxidant potentials of the same molecules were determined by 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and cupric ion reducing antioxidant capacity (CUPRAC) assays. Results: The obtained results displayed that some of the tested hydrazone compounds had varying enzyme inhibition and antioxidant activities. Discussion: In enzyme inhibition studies, N′-[2-{[4-fluorobenzensulfonyl]oxy}benzylidene]-3,5-dinitrobenzohydrazide (IIIb) with inhibition value 77.13 ± 0.14% showed the closest activity to the standard compound galanthamine with inhibition value 78.14 ± 0.65%. Compared to DPPH and ABTS assays, all of the molecules tested in CUPRAC assay showed antioxidant activities. The molecules tested in CUPRAC assay did not show as much activity as standard molecules (BHA, BHT and α-TOC). Conclusions: Compounds N′-[4-{[4-fluorobenzensulfonyl]oxy}benzylidene]-3,5-dinitrobenzohydrazide (IIIf) and N′-[4-{[4-methoxybenzensulfonyl]oxy}benzylidene]-3,5dinitrobenzohydrazide (IIIh) in this assay were determined to be the most active molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Angelova, P.R. and Abramov, A.Y., FEBS Lett., 2018, vol. 592, pp. 692–702. https://doi.org/10.1002/1873-3468.12964

    Article  CAS  PubMed  Google Scholar 

  2. Esmer, Y.I., Çınar, E., and Başaran, E., ChemistrySelect, 2022, vol. 7, Article ID: e202202771. https://doi.org/10.1002/slct.202202771

  3. Başaran, E., Çakmak, R., Şentürk, M., and Taskin-Tok, T., J. Mol. Recognit., 2022, vol. 35, Article ID: e2982. https://doi.org/10.1002/jmr.2982

  4. Abramov, A.Y., FEBS J., 2018, vol. 285, pp. 3544–3546. https://doi.org/10.1111/febs.14646

    Article  CAS  PubMed  Google Scholar 

  5. Ramirez-Bermudez, J., Arch. Med. Res., 2018, vol. 43, pp. 595–599. https://doi.org/10.1016/j.arcmed.2012.11.008

    Article  Google Scholar 

  6. Taler, V. and Phillips, N.A., J. Clin. Exp. Neuropsychol., 2008, vol. 30, pp. 501–556. https://doi.org/10.1080/13803390701550128

    Article  PubMed  Google Scholar 

  7. Masters, C.L., Bateman, R., Blennow, K., Rowe, C.C., Sperling, R. A., and Cummings, J.L., Nat. Rev. Dis. Primers., 2015, vol. 1, p. 15056. https://doi.org/10.1038/nrdp.2015.56

    Article  PubMed  Google Scholar 

  8. Blennow, K., de Leon, M.J., and Zetterberg, H., Lancet, 2006, vol. 368, pp. 387–403. https://doi.org/10.1016/S0140-6736(06)69113-7

    Article  CAS  PubMed  Google Scholar 

  9. Alzheimer’s Association, Alzheimers. Dement., 2019, vol. 15, pp. 321–387. https://doi.org/10.1016/j.jalz.2019.01.010

  10. Alzheimer’s Association, Alzheimers. Dement., 2016, vol. 12, pp. 459–509. https://doi.org/10.1016/j.jalz.2016.03.001

  11. Arendt, T., Bigl, V., Tennstedt, A., and Arendt, A., Neurosci., 1985, vol. 14, pp. 1–14. https://doi.org/10.1016/0306-4522(85)90160-5

    Article  CAS  Google Scholar 

  12. Muir, J.L., Pharmacol. Biochem. Behav., 1997, vol. 56, pp. 687–696. https://doi.org/10.1016/S0091-3057(96)00431-5

    Article  CAS  PubMed  Google Scholar 

  13. Chopade, P., Chopade, N., Zhao, Z., Mitragotri, S., Liao, R., and Chandran Suja, V., Bioeng. Transl. Med., 2023, vol. 8, Article ID: e10367. https://doi.org/10.1002/btm2.10367

  14. Çakmak, R., Başaran, E., Boğa, M., Erdoğan, Ö., Çınar, E., and Çevik, Ö., Russ. J. Bioorg. Chem., 2022, vol. 48, pp. 334–344. https://doi.org/10.1134/S1068162022020182

    Article  Google Scholar 

  15. Başaran, E., Haşimi, N., Çakmak, R., and Çınar, E., Russ. J. Bioorg. Chem., 2022, vol. 48, pp. 143–152. https://doi.org/10.1134/S1068162022010058

    Article  Google Scholar 

  16. Khansari, N., Shakiba, Y., and Mahmoudi, M., Recent Pat. Inflamm. Allergy Drug Discov., 2009, vol. 3, pp. 73–80. https://doi.org/10.2174/187221309787158371

    Article  CAS  PubMed  Google Scholar 

  17. García, J.J., López-Pingarrón, L., Almeida-Souza, P., Tres, A., Escudero, P., García-Gil, F.A., Tan, D.-X., Reiter, R.J. Ramírez, J.M., and Bernal-Pérez, M., J. Pineal Res., 2014, vol. 56, pp. 225–237. https://doi.org/10.1111/jpi.12128

    Article  CAS  PubMed  Google Scholar 

  18. Kaya, S., Yalçın, T., and Kuloğlu, T., Comp. Clin. Path., 2023, vol. 32, pp. 393–404. https://doi.org/10.1007/s00580-023-03449-2

    Article  CAS  Google Scholar 

  19. Kaya, S., Yalçın, T., Boydak, M., and Dönmez, H.H., Biol. Trace Elem. Res., 2013, vol. 201, pp. 1806–1815. https://doi.org/10.1007/s12011-022-03276-6

    Article  CAS  Google Scholar 

  20. Başaran, E., Çakmak, R., Çınar, E., and Çevik, Ö., Cumhuriyet Sci. J., 2022, vol. 43, pp. 437–442. https://doi.org/10.17776/csj.1099217

    Article  Google Scholar 

  21. Çakmak, R. and Başaran, E., Batman Uni. J. Life Sci., 2022, vol. 12, pp. 79–91. https://doi.org/10.55024/buyasambid.1135813

    Article  Google Scholar 

  22. Çakmak, R., Başaran, E., Kaya, S., and Erkan, S., J. Mol. Struct., 2022, vol. 1253, Article ID: 132224. https://doi.org/10.1016/j.molstruc.2021.132224

  23. Aslanhan, Ö., Kalay, E., Tokalı, F. S., Can, Z., and Şahin, E., J. Mol. Struct., 2023, vol. 1279, Article ID: 135037. https://doi.org/10.1016/j.molstruc.2023.135037

  24. Rollas, S. and Güniz Küçükgüzel, Ş., Molecules, 2007, vol. 12, pp. 1910–1939. https://doi.org/10.3390/12081910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Başaran, E., Russ. J. Bioorg. Chem., 2023, vol. 49, pp. 114–126. https://doi.org/10.1134/S1068162023010065

    Article  Google Scholar 

  26. Kamalı, A., Çakmak, R., and Boğa, M., J. Chin. Chem. Soc., 2022, vol. 69, pp. 731–743. https://doi.org/10.1002/jccs.202100511

    Article  CAS  Google Scholar 

  27. Başaran, E., Inst. Sci. Tech., 2021, vol. 11, pp. 2967– 2978. https://doi.org/10.21597/jist.963129

    Article  Google Scholar 

  28. Başaran, E., Çakmak, R., Akkoc, S., and Kaya, S., J. Mol. Struct., 2022, vol. 1265, Article ID: 133427. https://doi.org/10.1016/j.molstruc.2022.133427

  29. Hartmann, J., Kiewert, C., Duysen, E.G., Lockridge, O., Greig, N.H., and Klein, J., J. Neurochem., 2007, vol. 100, pp. 1421–1429. https://doi.org/10.1111/j.1471-4159.2006.04347.x

    Article  CAS  PubMed  Google Scholar 

  30. Ellman, G.L., Courtney, K.D., Andres, V.Jr., and Featherstone, R.M., Biochem. Pharmacol., 1961, vol. 7, pp. 88–90. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  31. Blois, M.S., Nature, 1958, vol. 18, pp. 1199–1200.

    Article  ADS  Google Scholar 

  32. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C., Free Radicals Biol. Med., 1999, vol. 26, pp. 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  33. Apak, R., Güçlü, K., Özyürek, M., and Karademir, S.E., J. Agric. Sci., 2004, vol. 52, pp. 7970–7981. https://doi.org/10.1021/jf048741x

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Projects Coordination Unit of Batman University (Grant no. BTÜBAP-2023-SBMYO-02).

Author information

Authors and Affiliations

Authors

Contributions

The authors EB, RÇ—designed the experiments. The authors EB, RÇ, and EÇ—synthesized the chemical compounds. The author EB—elucidated the structures of the compounds using spectroscopic methods. The authors EÇ, MB, GT, and Sİ—carried out all stages of biological activity studies. The authors RÇ, EB—participated in the data processing and contributed to the preparation of the article.

All authors participated in the discussions.

Corresponding author

Correspondence to Eyüp Başaran.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, R., Çınar, E., Başaran, E. et al. Synthesis of Novel N-Acylhydrazones Derived from 3,5-Dinitrobenzohydrazide and Evaluation of Their Anticholinesterase and Antioxidant Activities. Russ J Bioorg Chem 50, 76–85 (2024). https://doi.org/10.1134/S1068162024010114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024010114

Keywords:

Navigation