Skip to main content
Log in

Some Azo Dyes Containing Uracil: DFT Study and Antiparasitic Activity for Leishmania promastigotes and Trichomonas vaginalis

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study 6-aminopyrimidine-2,4,5(3)-trione-5-[(phenyl)hydrazone] (dye 1) and 6-aminopyrimidine-2,4,5(3)-trione-5-[(4-methoxyphenyl)hydrazone] (dye 2) were resynthesized by method given in the literature and confirmed structurally using Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopic methods. For the first time, for dyes 1 and 2, both theoretical studies were performed and investigated in terms of antiparasitic activity. The density functional theory (DFT) calculations for possible tautomeric forms of dyes 1 and 2 were carried out by using DFT/B3LYP/6-311++G (d,p) method. Thus, optimized geometries, IR and 1H NMR spectral data were obtained and compared with experimental ones. Therefore, the most possible tautomeric forms were determined for dyes 1 and 2. Results show that in the gas phase and dimethyl sulfoxide (DMSO) solvent for both dyes, the amine-diketo-hydrazone forms (T-I-H) are the lowest energy and therefore the most stable form. Leishmania spp. and Trichomonas vaginalis are flagellated protozoan parasites that cause parasitic infections in humans. In vitro antiparasitic activity of dye 1 and dye 2 against Trichomonas vaginalis trophozoites, Leishmania tropica, Leishmania major, and Leishmania infantum promastigotes were determined for the first time. The in vitro antileishmanial and antitrichomonal activity was performed by microdilution method. Amphotericin B and Metronidazole were used for Leishmania spp. promastigotes, and T. vaginalis trophozoites, as a control drug, respectively. The Minimum Lethal Concentration (MLC) was determined and compared with the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Scheme 1.

Similar content being viewed by others

REFERENCES

  1. Mohammadi, A., Khalili, B., and Tahavor, M., Spectrochim. Acta A, 2015, vol. 150, pp. 799–805. https://doi.org/10.1016/j.saa.2015.06.024

    Article  CAS  Google Scholar 

  2. Gouda, M.A., Fakhr, H., Margret, E., Girges, M., and Berghot, M.A., J. Saudi Chem. Soc., 2016, vol. 20, pp. 151–157. https://doi.org/10.1016/j.jscs.2012.06.004

    Article  CAS  Google Scholar 

  3. Wamhoff, H., Dzenis, J., and Hirota, K., Adv. Heterocycl. Chem., 1992, vol. 55, pp. 129–259. https://doi.org/10.1016/S0065-2725(08)60222-6

    Article  CAS  Google Scholar 

  4. Kirkan, B. and Gup, R., Turk. J. Chem., 2008, vol. 32, pp. 9–17.

    CAS  Google Scholar 

  5. Seferoğlu, Z., Arkivoc, 2009, vol. 8, pp. 42–57.

    Article  Google Scholar 

  6. Garrett, R.H. and Grisham, C.M., Principals of Biochemistry with a Human Focus, United States: Cengage Learning Inc., 1997, p. 326.

  7. Palafox, M.A., Tardajos, G., Guerrero-Martínez, A., Rastogi, V.K., Mishra, D., Ojha, S.P., and Kiefer, W., Chem. Phys., 2007, vol. 340, pp. 17–31. https://doi.org/10.1016/j.chemphys.2007.07.032

    Article  CAS  Google Scholar 

  8. Soni, S.D., Srikrishnan, T., and Alderfer, J.L., Nucleosides Nucleotides Nucleic Acids, 1996, vol. 15, pp. 1945–1957. https://doi.org/10.1080/07328319608002743

    Article  CAS  Google Scholar 

  9. Akbari, M., Oryan, A., and Hatam, G., Immunol. Lett., 2021, vol. 233, pp. 80–88. https://doi.org/10.1016/j.imlet.2021.03.011

    Article  CAS  PubMed  Google Scholar 

  10. Ikram, M., Rehman, S., Jamal, Q., and Shah, A., J. Chem. Soc. Pak., 2015, vol. 37, pp. 869–878.

    CAS  Google Scholar 

  11. Belazzoug, S., Vet. Parasitol., 1992, vol. 44, pp. 15–19. https://doi.org/10.1016/0304-4017(92)90139-Z

    Article  CAS  PubMed  Google Scholar 

  12. World Health Organization. Leishmaniasis: Overwiev. https://www.who.int/health-topics/leishmaniasis#tab=tab_1

  13. Burza, S., Croft, S.L., and Boelaert, M., Lancet, 2018, vol. 392, pp. 951–970.

    Article  PubMed  Google Scholar 

  14. Anversa, L., Tiburcio, M.G.S., Richini-Pereira, V.B., and Ramirez, L.E., Rev. Assoc. Med. Bras., 2018, vol. 64, pp. 281–289. https://doi.org/10.1590/1806-9282.64.03.281

    Article  PubMed  Google Scholar 

  15. Süleymanoğlu, N., Ustabaş, R., Ünver, Y., Alpaslan, Y.B., Direkel, Ş., and Karaman, Ü., J. Mol. Struct., 2019, vol. 1182, pp. 36–46. https://doi.org/10.1016/j.molstruc.2019.01.005

    Article  CAS  Google Scholar 

  16. Ustabaş, R., Süleymanoğlu, N., Ünver, Y., and Direkel, Ş., J. Mol. Struct., 2020, vol. 1214, pp. 128217. https://doi.org/10.1016/j.molstruc.2020.128217

    Article  CAS  Google Scholar 

  17. Edwards, T., Burke, P., Smalley, H., and Hobbs, G., Crit. Rev. Microbiol., 2016, vol. 42, pp. 406–417. https://doi.org/10.3109/1040841X.2014.958050

    Article  CAS  PubMed  Google Scholar 

  18. Schwebke, J.R. and Burgess, D., Clin. Microbiol. Rev., 2004, vol. 17, pp. 794–803. https://doi.org/10.1128/CMR.17.4.794-803.2004

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cudmore, S.L., Delgaty, K.L., Shannon, F., Petrin Dino, P., and Garber, G.E., Clin. Microbiol. Rev., 2004, vol. 17, pp. 783–793. https://doi.org/10.1128/CMR.17.4.783-793.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bengiat, R., Klein, A.M., Gil, M., Bogoslavsky, B., Cohen, S., Yardeni, G., Zilbermann, I., and Almog, J., IUCrData, 2016, vol. 1, x160261. https://doi.org/10.1107/S2414314616002613

  21. Ustabaş, R., Çoruh, U., Sancak, K., Demirkan, E., and Vazquez-Lopez, E.M, Acta Crystallogr. E, 2007, vol. 63, pp. o2774–o2775. https://doi.org/10.1107/S1600536807020326

  22. Seferoğlu, Z. and Ertan, N., Cent. Eur. J. Chem., 2008, vol. 6, pp. 81–88. https://doi.org/10.2478/s11532-007-0062-4

    Article  CAS  Google Scholar 

  23. Das, S., Saikia, B.K., Sridhar, B., and Thakur, A.J., Acta Crystallogr. E, 2008, vol. 64, p. 1662. https://doi.org/10.1107/S1600536808024021

  24. Kennedy, A.R., McKellar, S.C., and Okoth, M.O., Acta Crystallogr. E, 2010, vol. 66, pp. m1330–m1331. https://doi.org/10.1107/S1600536810037360

  25. Kaminski, R., Lauk, U., Skrabal, P., and Zollinger, H., Helvetica Chim. Acta, 1983, vol. 66, pp. 2002–2017. https://doi.org/10.1002/hlca.19830660712

    Article  CAS  Google Scholar 

  26. Viscardi, G., Quagliotto, P., Barolo, C., Diulgheroff, N., Caputo, G., and Barnia, E., Dyes Pigm., 2002, vol. 54, pp. 131–140. https://doi.org/10.1016/S0143-7208(02)00043-8

    Article  CAS  Google Scholar 

  27. Yazdanbakhsh, M.R., Abbasnia, M., Sheykhan, M., and Ma‘mani, L., J. Mol. Struct., 2010, vol. 977, pp. 266–273. https://doi.org/10.1016/j.molstruc.2010.06.005

    Article  CAS  Google Scholar 

  28. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., GAUSSIAN 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2009.

  29. Peng, C., Ayala, P.Y., Schlegel, H.B., and Frisch, M.J., J. Comput. Chem., 1996, vol. 17, pp. 49–56. https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1%3C49::AID-JCC5%3E3.0.CO;2-0

    Article  CAS  Google Scholar 

  30. Stephens, P.J., Devlin, F.J., Chablowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, pp. 11623–11627.

    Article  CAS  Google Scholar 

  31. Dennington, R., Keith, T., and Millam, J., GAUSSVIEW, Version 5, Semichem Inc., Shawnee Mission, KS, 2009.

  32. Abbas, A., Gökçe, H., Bahçeli, S., and Naseer, M.M., J. Mol. Struct., 2014, vol. 1075, pp. 352–364. https://doi.org/10.1016/j.molstruc.2014.07.001

    Article  CAS  Google Scholar 

  33. Gökçe, H., Öztürk, N., Taşan, M., Alpaslan, Y.B., and Alpaslan, G., Spectrosc. Lett., 2016, vol. 49, pp. 167–179. https://doi.org/10.1080/00387010.2015.1114952

    Article  CAS  Google Scholar 

  34. Ditchfield, R.J., J. Chem. Phys., 1972, vol. 56, pp. 5688– 5691. https://doi.org/10.1063/1.1677088

    Article  CAS  Google Scholar 

  35. Wolinski, K., Hinton, J.F., and Pulay, P., J. Am. Chem. Soc., 1990, vol. 112, pp. 8251–8260. https://doi.org/10.1021/ja00179a005

    Article  CAS  Google Scholar 

  36. Süleymanoğlu, N., Esmer Demir, E., Direkel, Ş., and Ünver, Y., J. Mol. Struct., 2020, vol. 1218, p. 128522. https://doi.org/10.1016/j.molstruc.2020.128522

    Article  CAS  Google Scholar 

  37. Süleymanoğlu, N., Ünver, Y., Ustabaş, R., Direkel, Ş., and Alpaslan, G., J. Mol. Struct., 2017, vol. 1144, pp. 80– 86. https://doi.org/10.1016/j.molstruc.2017.05.017

    Article  CAS  Google Scholar 

  38. Ünver, Y., Ünlüer, D., Direkel, Ş., and Durdağı, S., Turk. J. Chem., 2020, vol. 44, pp. 1164–1176. https://doi.org/10.3906/kim-2004-78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strober, W., Curr. Protoc. Immunol., 2015, vol. 111, A3.B.1–A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111

  40. Ertabaklar, H., Kivçak, B., Mert, T., and Töz, S.Ö., Turkiye Parazitol. Derg., 2009, vol. 33, pp. 263–265.

    PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The numerical calculations reported in this paper werefully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Contributions

Author ŞD—methodology, antileishmanial activity study. Author NS—methodology, DFT study. Author FE—sample synthesis, FTIR, and NMR spectroscopy. Authors ET, HE, and ÜK—antitrichomonal activity study. All authors contributed to manuscript preparation (writing and editing). All authors participated in the discussions.

FUNDING

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Corresponding author

Correspondence to Şahin Direkel.

Ethics declarations

The data that support the findings of this study are available from the corresponding author upon reasonable request. This article does not contain any studies involving animals or human participants performed by any of the authors. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Direkel, Ş., Süleymanoğlu, N., Eyduran, F. et al. Some Azo Dyes Containing Uracil: DFT Study and Antiparasitic Activity for Leishmania promastigotes and Trichomonas vaginalis. Russ J Bioorg Chem 49, 1408–1421 (2023). https://doi.org/10.1134/S1068162023060213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023060213

Keywords:

Navigation