Skip to main content
Log in

Design and Antibacterial Mechanism of Peptides Derived from Sakacin P

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa easily obtains multidrug resistance and forms biofilm. These properties bring more challenges to its control. Antimicrobial peptides (AMPs) can inhibit the formation of biofilms. However the nature AMPs have many adverse factors which prevent its extensive application. Sacakin P has 43 amino acids and belongs to the IIa bacteriocins. In this study, the amino acid sequence with an α-helical structure at positions 18–33 of sakacin P was intercepted, and three AMPs were obtained by substituting amino acids at different positions with arginine (R) and lysine (K). The modified AMPs had good antibacterial activity against P. aeruginosa, and the minimum inhibitory concentration (MIC) was 2–8 µg/mL. P. aeruginosa biofilm formation was associated with nutrients and other environmental factors. Low pH and high NaCl and glucose concentrations effectively inhibited biofilm formation. Disinfectants such as 84 disinfectant, alcohol, and detergent did not effectively eliminate P. aeruginosa biofilms. Sakacin P16-R8 almost completely inhibited P. aeruginosa biofilm formation at 4 MIC and removed approximately 50% of a formed biofilm. The three AMPs were less toxic to eukaryotic cells, and the cell viability was >60% at 128 µg/mL of an AMP. The extracellular nucleic acid and protein content in the supernatant after treating P. aeruginosa with sakacin P16-R8 significantly increased with incubation time and peptide concentration. Flow cytometry showed that P. aeruginosa treated with 1 MIC and 2 MIC of sakacin P16-R8 showed 84.0 and 92.6% cell death, respectively. The results suggest that the modified AMPs exerted their antibacterial activity by increasing bacterial cell membrane permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Rossolini, G.M. and Mantengoli, E., Clin. Microbiol. Infect., 2005, vol. 11, pp. 17–32. https://doi.org/10.1134/S1068162020070080

    Article  CAS  PubMed  Google Scholar 

  2. Bai, X., Chai, X.L., Yan, X.L., Gao, H., Zhang, H.L., and Zhao, J.J., Anim. Husb. Vet. Med., 2011, vol. 43, pp. 31–35.

    CAS  Google Scholar 

  3. Hancock R.E. and Speert D.P., Drug Resist. Update, 2000, vol. 3, pp. 247–255. https://doi.org/10.1054/drup.2000.0152

    Article  CAS  Google Scholar 

  4. Lambert, P.A., J. R. Soc. Med., 2002, vol. 95, pp. 22–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Harmsen, M., Yang, L., Pamp, S.J., and Tolker-Nielsen, T., FEMS Immunol. Med. Microbiol., 2003, vol. 59, pp. 253–268. https://doi.org/10.1111/j.1574-695X.2010.00690.x

    Article  CAS  Google Scholar 

  6. Mah, T.F. and O’Toole, G.A., Trends Microbiol., 2001, vol. 9, pp. 34–39. https://doi.org/10.1016/S0966-842X(00)01913-2

    Article  CAS  PubMed  Google Scholar 

  7. Irie, Y., Borlee, B.R., O’Connor, J.R., Hill, P.J., Harwood, C.S., and Wozniak, D.J., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 20632–20636. https://doi.org/10.1073/pnas.1217993109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cady, N.C., McKean, K.A., Behnke, J., Kubec, R., Mosier, A.P., and Kasper, S.H., PLoS One, 2012, vol. 7, art. e38492. https://doi.org/10.1371/journal.pone.0038492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borlee, B.R., Goldman, A.D., Murakami, K., Samudrala, R., Wozniak, D.J., and Parsek, M.R., Mol. Microbiol., 2010, vol. 75, pp. 827–842. https://doi.org/10.1111/j.1365-2958.2009.06991.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Storz, M.P., Maurer, C.K., Zimmer, C., Wagner, N., Brengel, C., and de Jong, J.C., J. Am. Chem. Soc., 2012, vol. 134, pp. 16143–16146. https://doi.org/10.1021/ja3072397

    Article  CAS  PubMed  Google Scholar 

  11. Ganguly, K., Wu, R., Ollivault-Shiflett, M., Goodwin, P.M., Silks, L.A., and Iyer, R., J. Drug Target., 2011, vol. 19, pp.528–539. https://doi.org/10.3109/1061186X.2010.519032

    Article  CAS  PubMed  Google Scholar 

  12. da Costa, J.P., Cova, M., Ferreira, R., and Vitorino, R., Appl. Microbiol. Biotechnol., 2005, vol. 99, pp. 2023–2040. https://doi.org/10.1007/s00253-015-6375-x

    Article  CAS  Google Scholar 

  13. de la Fuente-Núñez, C., Reffuveille, F., Fernández, L., and Hancock, R.E., Curr. Opin. Microbiol., 2013, vol. 16, pp. 580–589. https://doi.org/10.1016/j.mib.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  14. Bahnsen, J.S., Franzyk, H., Sayers, E.J., Jones, A.T., and Nielsen, H.M., Pharm. Res., 2015, vol. 32, pp. 1546–1556.

    Article  CAS  Google Scholar 

  15. Lv, Y.F., Wang, J.J., Gao, H., Wang, Z.Y., Dong, N., and Ma, Q.Q., PLoS One, 2014, vol. 9, art. e86364. https://doi.org/10.1371/journal.pone.0086364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hasper, H.E., Kramer, N.E., Smith, J.L., Hillman, J.D., Zachariah, C., and Kuipers, O.P., Science, 2006, vol. 313, pp. 1636–1637. https://doi.org/10.1126/science.1129818

    Article  CAS  PubMed  Google Scholar 

  17. Hao, G., Shi, Y.H., Tang, Y.L., and Le, G.W., J. Microbiol., 2013, vol. 51, pp. 200–206. https://doi.org/10.1007/s12275-013-2441-1

    Article  CAS  PubMed  Google Scholar 

  18. Brogden, N.K. and Brogden, K.A., Int. J. Antimicrob. Agents, 2011, vol. 38, pp. 217–225. https://doi.org/10.1016/j.ijantimicag.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, Y., Shapira, R., Eisenstein, M., and Montville, T.J., Appl. Environ. Microb., 1997, vol. 63, pp. 524. https://doi.org/10.1128/AEM.63.2.524-531.1997

    Article  CAS  Google Scholar 

  20. Nilsson, L., Huss, H.H., and Gram, L., Int. J. Food Mocrobiol., 1997, vol. 38, pp. 217–227. https://doi.org/10.1016/S0168-1605(97)00111-6

    Article  CAS  Google Scholar 

  21. Katla, T., Møretrø, T., Sveen, I., Aasen, I.M., Axelsson, L., and Rørvik, L.M., J. Appl. Microbiol., 2010, vol, 93, pp. 191–196. https://doi.org/10.1046/j.1365-2672.2002.01675.x

    Article  Google Scholar 

  22. Ma, Z., Wei, D.D., Yan, P., Zhu, X., Shan, A.S., and Bi, Z.P., Biomaterials, 2015, vol. 52, pp. 517–530. https://doi.org/10.1016/j.biomaterials.2015.02.063

    Article  CAS  PubMed  Google Scholar 

  23. Lyu, Y.F., Yang, Y., Lyu, X.T., Dong, N., and Shan, A.S., Sci. Rep. (UK), 2016, vol. 6, p. 27258. https://doi.org/10.1038/srep27258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun, J.B., Xia, Y.Q., Li, D., Du, Q., and Liang, D.H., Biochim. Biophys. Acta., 2014, vol. 1838, pp. 2985–2993. https://doi.org/10.1038/srep27258

    Article  CAS  PubMed  Google Scholar 

  25. Ong, Z.Y., Wiradharma, N., and Yang, Y.Y., Adv. Drug Deliver. Rev., 2014, vol. 78, pp. 28–45. https://doi.org/10.1016/j.addr.2014.10.013

    Article  CAS  Google Scholar 

  26. Ong, Z.Y., Gao, S.J., and Yang, Y.Y., Adv. Funct. Mater., 2013, vol. 23, pp. 3682–3692. https://doi.org/10.1002/adfm.201202850

    Article  CAS  Google Scholar 

  27. Liu, X.L., Cao, R., Wang, S., Jia, J.L., and Fei, H., J. Med. Chem., 2016, vol. 59, pp. 5238. https://doi.org/10.1021/acs.jmedchem.5b02016

    Article  CAS  PubMed  Google Scholar 

  28. Ma, Z., Yang, J., Han, J.Z., Gao, L., Liu, H.X., and Lu, Z.X., J. Med. Chem., 2016, vol. 59, pp. 10946–10962. https://doi.org/10.1021/acs.jmedchem.6b00922

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Key R&D Program of China (Grant no. 2018YFC1602500), Agricultural Independent Innovation Program in Jiangsu Province (Grant no. CX (18)3053), NSFC (Grant no. 31972174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Bie.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

The authors contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bingxue Chang, Ma, W., Lu, Z. et al. Design and Antibacterial Mechanism of Peptides Derived from Sakacin P. Russ J Bioorg Chem 48, 399–410 (2022). https://doi.org/10.1134/S1068162022020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022020054

Keywords:

Navigation