Skip to main content
Log in

Natural Recovery of Terrestrial Ecosystems after the Cessation of Industrial Pollution: 1. A State-of-the-Art Review

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

In recent decades, atmospheric emissions from industrial enterprises have been reduced in many countries, which makes it possible to analyze the patterns of ecosystem recovery. The review provides an annotated list of studies of natural recovery (i.e., without involving any reclamation measures) of terrestrial ecosystems near industrial plants that have ceased or significantly reduced their emissions. Seventy-three studies of biota recovery (70 publications) performed near 22 plants (mainly metallurgical ones) have been identified; other 18 and 14 studies deal with analysis based on repeated records of the dynamics of the content of pollutants in plants and animals and in soils, respectively. Numerous gaps in the knowledge of natural recovery have been revealed: uneven study of different biomes and ecosystem types, fragmentariness (absence) of data on many taxa, the prevailing number of single-component studies within a specific area, and dominance of relatively short observation series with a small number of time points. These gaps make it so far impossible to generalize data on a global scale. Shortcomings in the presentation of results in publications (incomplete data on the dynamics of emissions and dates of material collection) also make it difficult to generalize data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Ettler, V., Soil contamination near non-ferrous metal smelters: A review, Appl. Geochem., 2016, vol. 64, pp. 56–74. https://doi.org/10.1016/j.apgeochem.2015.09.020

    Article  CAS  Google Scholar 

  2. Dudka, S. and Adriano, D.C., Environmental impacts of metal ore mining and processing: A review, J. Environ. Quality, 1997, vol. 26, no. 3, pp. 590–602. https://doi.org/10.2134/jeq1997.00472425002600030003x

    Article  CAS  Google Scholar 

  3. Kozlov, M.V., Zvereva, E.L., and Zverev, V.E., Impacts of Point Polluters on Terrestrial Biota: Comparative Analysis of 18 Contaminated Areas, Dordrecht: Springer, 2009.

    Book  Google Scholar 

  4. Vorobeichik, E.L. and Kozlov, M.V., Impact of point polluters on terrestrial ecosystems: Methodology of research, experimental design, and typical errors, Russ. J. Ecol., 2012, vol. 43 no. 2, pp. 89–96.https://doi.org/10.1134/S1067413612020166

    Article  Google Scholar 

  5. Pacyna, J.M., Pacyna, E.G., and Aas, W., Changes of emissions and atmospheric deposition of mercury, lead, and cadmium, Atmos. Environ., 2009, vol. 43, no. 1, pp. 117–127. https://doi.org/10.1016/j.atmosenv.2008.09.066

    Article  CAS  Google Scholar 

  6. Pacyna, E.G., Pacyna, J.M., Fudala, J., et al., Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in europe, Atmos. Environ., 2007, vol. 41, no. 38, pp. 8557–8566. https://doi.org/10.1016/j.atmosenv.2007.07.040

    Article  CAS  Google Scholar 

  7. Fioletov, V.E., McLinden, C.A., Krotkov, N., et al., A global catalogue of large SO2 sources and emissions derived from the ozone monitoring instrument, Atmos. Chem. Phys., 2016, vol. 16, no. 18, pp. 11497–11519. https://doi.org/10.5194/acp-16-11497-2016

    Article  CAS  Google Scholar 

  8. Foundations of Restoration Ecology, Falk, D.A., Palmer, M.A., and Zedler, J.B.Eds., Washington: Island Press, 2006.

    Google Scholar 

  9. Suding, K.N., Toward an era of restoration in ecology: Successes, failures, and opportunities ahead, Annu. Rev. Ecol. Evol. Syst, 2011, vol. 42, no. 1, pp. 465–487. https://doi.org/10.1146/annurev-ecolsys-102710-145115

    Article  Google Scholar 

  10. Palmer, M.A., Ambrose, R.F., and Poff, N.L., Ecological theory and community restoration ecology, Restor. Ecol., 1997, vol. 5, no. 4, pp. 291–300. https://doi.org/10.1046/j.1526-100X.1997.00543.x

    Article  Google Scholar 

  11. Hobbs, R.J. and Norton, D.A., Towards a conceptual framework for restoration ecology, Restor. Ecol, 1996, vol. 4, no. 2, pp. 93–110. https://doi.org/10.1111/j.1526-100X.1996.tb00112.x

    Article  Google Scholar 

  12. Vavrova, E., Cudlin, O., Vavricek, D., and Cudlin, P., Ground vegetation dynamics in mountain spruce (Picea abies (L.) Karsten) forests recovering after air pollution stress impact, Plant Ecol., 2009, vol. 205, no. 2, pp. 305–321. https://doi.org/10.1007/s11258-009-9619-y

    Article  Google Scholar 

  13. Bates, J.W., Bell, J.N.B., and Massara, A.C., Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in S.E. England over 21 years with declining SO2 concentrations, Atmos. Environ., 2001, vol. 35, no. 14, pp. 2557–2568.

    Article  CAS  Google Scholar 

  14. Pescott, O.L., Simkin, J.M., August, T.A., et al., Air pollution and its effects on lichens, bryophytes, and lichen-feeding Lepidoptera: Review and evidence from biological records, Biol. J. Linn. Soc., 2015, vol. 115, no. 3, pp. 611–635. https://doi.org/10.1111/bij.12541

    Article  Google Scholar 

  15. Winterhalder, K., Natural recovery of vascular plant communities on the industrial barrens of the Sudbury area, in Restoration and Recovery of an Industrial Region, Gunn, J.M., Ed., New York, 1995, pp. 93–102. https://doi.org/10.1007/978-1-4612-2520-1_7.

  16. McCall, J., Gunn, J., and Struik, H., Photo interpretive study of recovery of damaged lands near the metal smelters of Sudbury, Canada, Water Air Soil Pollut., 1995, vol. 85, no. 2, pp. 847–852.https://doi.org/10.1007/BF00476935

    Article  CAS  Google Scholar 

  17. Beckett, P., Lichens: Sensitive indicators of improving air quality, in Restoration and Recovery of an Industrial Region, Gunn, J.M., Ed., New York, 1995, pp. 81–91. https://doi.org/10.1007/978-1-4612-2520-1_6

  18. Tanentzap, A.J., Taylor, P.A., Yan, N.D., and Sal-mon, J.R., On Sudbury-area wind speeds: A tale of forest regeneration, J. Appl. Meteor. Climatol., 2007, vol. 46, no. 10, pp. 1645–1654. https://doi.org/10.1175/JAM2552.1

    Article  Google Scholar 

  19. Howe, N.M. and Lendemer, J.C., The recovery of a simplified lichen community near the Palmerton zinc smelter after 34 years, Bibl. Lichenol., 2011, vol. 106, pp. 120–136.

    Google Scholar 

  20. Berglund, A.M.M. and Nyholm, N.E.I., Slow improvements of metal exposure, health- and breeding conditions of pied flycatchers (Ficedula hypoleuca) after decreased industrial heavy metal emissions, Sci. Total Environ., 2011, vol. 409, no. 20, pp. 4326–4334. https://doi.org/10.1016/j.scitotenv.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  21. Vidic, T., Jogan, N., Drobne, D., and Vithar, B., Natural revegetation in the vicinity of the former lead smelter in Zerjav, Slovenia, Environ. Sci. Technol., 2006, vol. 40, no. 13, pp. 4119–4125. https://doi.org/10.1021/es052339x

    Article  CAS  PubMed  Google Scholar 

  22. Eeva, T. and Lehikoinen, E., Recovery of breeding success in wild birds, Nature, 2000, vol. 403, no. 6772, pp. 851–852. https://doi.org/10.1038/35002672

    Article  CAS  PubMed  Google Scholar 

  23. Eeva, T. and Lehikoinen, E., Long-term recovery of clutch size and egg shell quality of the pied flycatcher (Ficedula hypoleuca) in a metal polluted area, Environ. Pollut., 2015, vol. 201, pp. 26–33. https://doi.org/10.1016/j.envpol.2015.02.027

    Article  CAS  PubMed  Google Scholar 

  24. Chernen'kova, T.V., Kabirov, R.R., and Basova, E.V., Progressive successions in northern taiga forests upon reduction of aerotechnogenic load, Lesovedenie, 2011, no. 6, pp. 49-66.

  25. Lyanguzova, I.V., Yarmishko, V.T., Evdokimov, A.S., and Belyaeva, A.I., The state of pine forests on the Kola Peninsula against the background of reduction in the amount of emissions from nonferrous metal works, Rastit. Resursy, 2018, vol. 54, no. 4, pp. 516–531. https://doi.org/10.1134/S0033994618040039

    Article  Google Scholar 

  26. Yarmishko, V.T., Gorshkov, V.V., Lyanguzova, I.V., and Bakkal, I.Yu., Ecological monitoring of forest ecosystems in the Kola Peninsula under conditions of aerotechnogeic pollution, Region. Ekol., 2011, vol. 31, nos. 1–2, pp. 21–29.

    Google Scholar 

  27. Yarmishko, V.T. and Ignat’eva, O.V., Pinus sylvestris L. communities in technogenic environment in the north of European Russia: Structure, specific features of growth, and current state, Sib. Lesn. Zh., 2021, no. 3, pp. 4455. https://doi.org/10.15372/SJFS20210305

  28. Chernen’kova, T.V. and Bochkarev, Yu.N., Dynamics of spruce forests in the north of Kola Peninsula under the effect of natural and anthropogenic environmental factors, Zh. Obshch. Biol., 2013, vol. 74, no. 4, pp. 283–303.

    Google Scholar 

  29. Chernen'kova, T.V., Bochkarev, Yu.N., Fridrikh, M., and Bettger, T., Effect of natural and anthropogenic environmental factors on tree-ring growth in the north of Kola Peninsula, Lesovedenie, 2012, no. 4, pp. 3–15.

  30. Yarmishko, V.T., Lyanguzova, I.V., and Lyanguzov, A.Yu., Changes in the annual increment of Pinus sylvestris (Pinaceae) trunks upon reduction of aerotechnogenic pollution, Rastit. Resursy, 2017, no. 4, pp. 527–542.

  31. Zverev, V.E., Mortality and recruitment of mountain birch (Betula pubescens ssp. czerepanovii) in the impact zone of a copper–nickel smelter in the period of significant reduction of emissions: The results of 15-year monitoring, Russ. J. Ecol., 2009, vol. 40, no. 4, pp. 254–260.https://doi.org/10.1134/S1067413609040055

    Article  CAS  Google Scholar 

  32. Kalabin, G.V., Evdokimova, G.A., and Gornyi, V.I., Assessment of vegetation dynamics in disturbed land areas within the zone of impact from Severonickel Combined Smelter during reduction of impact on the environment, Gornyi Zh., 2010, no. 2, pp. 74–77.

  33. Lyanguzova, I.V. and Maznaya, E.A., Dynamic trends in Vaccinium myrtillus L. cenopopulations in the zone affected by a copper–nickel smelter complex: Results of 20-year monitoring, Russ. J. Ecol., 2012, vol. 43, no. 4, pp. 281–288.https://doi.org/10.1134/S106741361204008X

    Article  CAS  Google Scholar 

  34. Urbanavichyus, G.P., Borovichev, E.A., and Ershov, V.V., Cryptogamous organisms: Pioneers in the recovery of northern taiga forests upon reduction of industrial air pollution, Lesovedenie, 2021, no. 2, pp. 195–207. https://doi.org/10.31857/S0024114821020108

  35. Zvereva, E.L., Hunter, M.D., Zverev, V., and Kozlov, M.V., Factors affecting population dynamics of leaf beetles in a subarctic region: The interplay between climate warming and pollution decline, Sci. Total Environ., 2016, vol. 566-567, pp. 1277–1288. https://doi.org/10.1016/j.scitotenv.2016.05.187

    Article  CAS  PubMed  Google Scholar 

  36. Kozlov, M.V., Zverev, V., and Zvereva, E.L., Combined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: Results of 26-year monitoring, Sci. Total Environ., 2017, vols. 601–602, pp. 802–811. https://doi.org/10.1016/j.scitotenv.2017.05.230

    Article  CAS  PubMed  Google Scholar 

  37. Tanasevich, A.V., Rybalov, L.B., and Kamaev, I.O., Dynamics of soil macrofauna in the zone of technogenic impact, Lesovedenie. 2009, no. 6, pp. 63–72.

  38. Kataev, G.D., The impact of emissions from a copper–nickel smelter on small mammal populations and communities in the Kola Peninsula, Zapovedn. Nauka, 2017, vol. 2, pp. 19–27. https://doi.org/10.24189/ncr.2017.033

    Article  Google Scholar 

  39. Berglund, A.M.M., Ingvarsson, P.K., Danielsson, H., and Nyholm, N.E.I., Lead exposure and biological effects in pied flycatchers (Ficedula hypoleuca) before and after the closure of a lead mine in northern Sweden, Environ. Pollut., 2010, vol. 158, no. 5, pp. 1368–1375. https://doi.org/10.1016/j.envpol.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  40. Kataev, G.D., Monitoring small mammal communities in the northern taiga subzone of Fennoscandia, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 2015, vol. 120, no. 3, pp. 3–13.

    Google Scholar 

  41. Vorobeichik, E.L., Trubina, M.R., Khantemirova, E.V., and Bergman, I.E., Long-term dynamic of forest vegetation after reduction of copper smelter emissions, Russ. J. Ecol., 2014, vol. 45, no. 6, pp. 498–507. https://doi.org/10.1134/S1067413614060150

    Article  CAS  Google Scholar 

  42. Trubina, M.R., Vorobeichik, E.L., Khantemirova, E.V., et al., Dynamics of forest vegetation after the reduction of industrial emissions: Fast recovery or continued degradation?, Dokl. Biol. Sci., 2014, vol. 458, pp. 302–305. https://doi.org/10.1134/S0012496614050135

    Article  CAS  PubMed  Google Scholar 

  43. Trubina, M.R., Vulnerability to copper smelter emissions in species of the herb–dwarf shrub layer: role of differences in the type of diaspore dispersal, Russ. J. Ecol., 2020, vol. 51, no. 2, pp. 107–117. https://doi.org/10.1134/S1067413620020125

    Article  CAS  Google Scholar 

  44. Mikhailova, I.N., Initial stages of recovery of epiphytic lichen communities after reduction of emissions from a copper smelter, Russ. J. Ecol., 2017, vol. 48, no. 4, pp. 335–339. https://doi.org/10.1134/S1067413617030110

    Article  Google Scholar 

  45. Mikhailova, I.N., Dynamics of epiphytic lichen communities in the initial period after reduction of emissions from a copper smelter, Russ. J. Ecol., 2020, vol. 51, no. 1, pp. 38–45. https://doi.org/10.31857/S1067413620010075

    Article  CAS  Google Scholar 

  46. Belskaya, E.A., Dynamics of trophic activity of leaf-eating insects on birch during reduction of emissions from the Middle Ural Copper Smelter, Russ. J. Ecol., 2018, no. 1, pp. 87–92. https://doi.org/10.1134/S1067413617060029

  47. Nesterkov, A.V. and Grebennikov, M.E., Grassland land snail communities after reduction of emissions from a copper smelter, Russ. J. Ecol., 2020, vol. 51, no. 6, pp. 578–588. https://doi.org/10.1134/S1067413620060065

    Article  CAS  Google Scholar 

  48. Vorobeichik, E.L., Ermakov, A.I., and Grebennikov, M.E., Initial stages of recovery of soil macrofauna communities after reduction of emissions from a copper smelter, Russ. J. Ecol., 2019, no. 2, pp. 146–160. https://doi.org/10.1134/S1067413619020115

  49. Vorobeichik, E.L., Ermakov, A.I., Nesterkova, D.V., and Grebennikov, M.E., Coarse woody debris as microhabitats of soil macrofauna in polluted areas, Biol. Bull., 2020, vol. 47, no. 1, pp. 87–96. https://doi.org/10.1134/S1062359020010173

    Article  CAS  Google Scholar 

  50. Korkina, I.N. and Vorobeichik, E.L., Humus index as an indicator of the topsoil response to the impacts of industrial pollution, Appl. Soil. Ecol., 2018, vol. 123, pp. 455–463. https://doi.org/10.1016/j.apsoil.2017.09.025

    Article  Google Scholar 

  51. Korkina I.N., Vorobeichik E.L. The humus index: A promising tool for environmental monitoring, Russ. J. Ecol., 2016, vol. 47, no. 6, pp. 526–531. https://doi.org/10.1134/S1067413616060084

    Article  Google Scholar 

  52. Korkina, I.N. and Vorobeichik, E.L., Non-typical degraded and regraded humus forms in metal-contaminated areas, or there and back again, Geoderma, 2021, vol. 404, art. 115390. https://doi.org/10.1016/j.geoderma.2021.115390

    Article  CAS  Google Scholar 

  53. Bel’skii, E.A. and Lyakhov, A.G., Dynamics of the community of hole-nesting birds upon reduction of industrial emissions (the example of the Middle Ural Copper Smelter), Russ. J. Ecol., 2021, no. 4, pp. 296–306. https://doi.org/10.1134/S1067413621040044

  54. Belskii E., Lyakhov A. Improved breeding parameters in the pied flycatcher with reduced pollutant emissions from a copper smelter, Environ. Pollut., 2022 (In press).

  55. Mukhacheva, S.V., Long-term dynamics of small mammal communities in the period of reduction of copper smelter emissions: 1. Composition, abundance, and diversity, Russ. J. Ecol., 2021, vol. 52, no. 1, pp. 84–93. https://doi.org/10.1134/S1067413621010100

    Article  CAS  Google Scholar 

  56. Mukhacheva, S.V. and Sozontov, A.N., Long-term dynamics of small mammal communities in the period of reduction of copper smelter emissions: 2. β-Diversity, Russ. J. Ecol., 2021,vol. 52, no. 6, pp. 532–541. https://doi.org/10.31857/S0367059721060081

    Article  Google Scholar 

  57. Vorobeichik, E.L. and Nesterkova, D.V., Technogenic boundary of the mole distribution in the region of copper smelter impacts: Shift after reduction of emissions, Russ. J. Ecol., 2015, vol. 46, no. 4, pp. 377–380. https://doi.org/10.1134/S1067413615040165

    Article  Google Scholar 

  58. Chernen’kova, T.V., Kabirov, R.R., Mekhanikova, E.V., et al., Demutation of vegetation after copper smelter shutdown, Lesovedenie., 2001, no. 6, pp. 31–37.

  59. Kalabin, G.V. and Moiseenko, T.I., Ecodynamics of technogenic provinces around mining industries: From degradation to recovery, Dokl. Ross. Akad. Nauk, 2011, vol. 437, no. 3, pp. 398–403.

    Google Scholar 

  60. Feriancova-Masarova, Z., Kalivodova, E., and Ferianc, O., Hniezdne ornitocenózy biotopov okolia hlinikárne v Žiari nad Hronom po dvadsiatich rokoch, Biologia (Bratislava), 1985, vol. 40, no. 2, pp. 199–209.

    Google Scholar 

  61. Trubina, M.R. and Makhnev, A.K., Dynamics of ground vegetation in forest phytocenoses under conditions of chronic pollution by fluorine, Russ. J. Ecol., 1997, vol. 28, no. 2, pp. 73–77.

    Google Scholar 

  62. Evdokimova, G.A., Korneikova, M.V., and Mozgova, N.P., Changes in the properties of soils and soil biota in the impact zone of the aerotechnogenic emissions from the Kandalaksha Aluminum Smelter, Euras. Soil Sci., 2013, vol. 46, no. 10, pp. 1042–1048. https://doi.org/10.7868/S0032180X13100031

    Article  CAS  Google Scholar 

  63. Juknys, R., Venclovienė, J., Stravinskiene, V., et al., Scots pine (Pinus sylvestris L.) growth and condition in a polluted environment: From decline to recovery, Environ. Pollut., 2003, vol. 125, no. 2, pp. 205–212.

    Article  CAS  Google Scholar 

  64. Juknys, R., Stravinskiene, V., and Venclovienė, J., Tree-ring analysis for the assessment of anthropogenic changes and trends, Environ. Monit. Assess., 2002, vol. 77, no. 1, pp. 81–97. https://doi.org/10.1023/a:1015718519559

    Article  PubMed  Google Scholar 

  65. Juknys, R., Augustaitis, A., Vencloviene, J., et al., Dynamic response of tree growth to changing environmental pollution, Eur. J. For. Res., 2014, vol. 133, no. 4, pp. 713–724. https://doi.org/10.1007/s10342-013-0712-3

    Article  CAS  Google Scholar 

  66. Perner, J., Voigt, W., Bahrmann, R., et al., Responses of arthropods to plant diversity: Changes after pollution cessation, Ecography, 2003, vol. 26, no. 6, pp. 788–800. https://doi.org/10.1111/j.0906-7590.2003.03549.x

    Article  Google Scholar 

  67. Wagner, M., Heinrich, W., and Jetschke, G., Seed bank assembly in an unmanaged ruderal grassland recovering from long-term exposure to industrial emissions, Acta Oecol., 2006, vol. 30, no. 3, pp. 342–352. https://doi.org/10.1016/j.actao.2006.06.002

    Article  Google Scholar 

  68. Lovei, G.L. and Magura, T., Body size changes in ground beetle assemblages: A reanalysis of Braun et al. (2004)’s data, Ecol. Entomol., 2006, vol. 31, no. 5, pp. 411–414. https://doi.org/10.1111/j.1365-2311.2006.00794.x

    Article  Google Scholar 

  69. Braun, S.D., Jones, T.H., and Perner, J., Shifting average body size during regeneration after pollution: A case study using ground beetle assemblages, Ecol. Entomol., 2004, vol. 29, no. 5, pp. 543–554.

    Article  Google Scholar 

  70. Barga-Wieclawska, J.A. and Swiercz, A., A long-term influence of anthropogenic alkalization on molluscs biodiversity in an area affected by cement industry, Swietokrzyskie Mountains, South-Central Poland, Arch. Environ. Prot., 2015, vol. 41, no. 4, pp. 49–61. https://doi.org/10.1515/aep-2015-0039

    Article  Google Scholar 

  71. Hutchinson, T.C. and Symington, M.S., Persistence of metal stress in a forested ecosystem near Sudbury, 66 years after closure of the O’Donnell roast bed, J. Geochem. Explor., 1997, vol. 58, nos 2-3, pp. 323–330. https://doi.org/10.1016/S0375-6742(96)00067-2

    Article  CAS  Google Scholar 

  72. Anand, M., Tucker, B.C., and Desrochers, R., Ecological monitoring of terrestrial ecosystem recovery from man-made perturbation: Assessing community complexity, Adv. Air Pollut., 2002, vol. 11, pp. 341–350.

    CAS  Google Scholar 

  73. Schram, L.J., Wagner, C., McMullin, R.T., and Anand, M., Lichen communities along a pollution gradient 40 years after decommissioning of a Cu–Ni smelter, Environ. Sci. Pollut. Res., 2015, vol. 22, no. 12, pp. 9323–9331. https://doi.org/10.1007/s11356-015-4088-4

    Article  CAS  Google Scholar 

  74. Anand, M., Ma, K.-M., Okonski, A., et al., Characterising biocomplexity and soil microbial dynamics along a smelter-damaged landscape gradient, Sci. Total Environ., 2003, vol. 311, nos. 1–3, pp. 247–259. https://doi.org/10.1016/S0048-9697(03)00058-5

    Article  CAS  PubMed  Google Scholar 

  75. Babin-Fenske, J. and Anand, M., Patterns of insect communities along a stress gradient following decommissioning of a Cu–Ni smelter, Environ. Pollut., 2011, vol. 159, no. 10, pp. 3036–3043. https://doi.org/10.1016/j.envpol.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  76. Chillo, V. and Anand, M., Effects of past pollution on zoochory in a recovering mixed temperate-boreal forest, Ecoscience, 2012, vol. 19, no. 3, pp. 258–265. https://doi.org/10.2980/19-3-3515

    Article  Google Scholar 

  77. Nahmani, J. and Rossi, J.-P., Soil macroinvertebrates as indicators of pollution by heavy metals, Compt. Rend. Biol., 2003, vol. 326, no. 3, pp. 295–303.

    Article  CAS  Google Scholar 

  78. Nahmani, J., Lavelle, P., Lapied, E., and Van Oort, F., Effects of heavy metal soil pollution on earthworm communities in the north of France, Pedobiologia, 2003, vol. 47, nos. 5–6, pp. 663–669. https://doi.org/10.1078/0031-4056-00243

    Article  CAS  Google Scholar 

  79. Archibold, O.W., Vegetation recovery following pollution control at Trail, British Columbia, Can. J. Bot., 1978, vol. 56, no. 14, pp. 1625–1637. https://doi.org/10.1139/b78-191

    Article  Google Scholar 

  80. Beyer, W.N., Krafft, C., Klassen, S., et al., Relating injury to the forest ecosystem near Palmerton, PA, to zinc contamination from smelting, Arch. Environ. Contam. Toxicol., 2011, vol. 61, no. 3, pp. 376–388. https://doi.org/10.1007/s00244-010-9640-0

    Article  CAS  PubMed  Google Scholar 

  81. Fisker, K.V., Sorensen, J.G., Damgaard, C., et al., Genetic adaptation of earthworms to copper pollution: Is adaptation associated with fitness costs in dendrobaena octaedra?, Ecotoxicology, 2011, vol. 20, no. 3, pp. 563–573. https://doi.org/10.1007/s10646-011-0610-8

    Article  CAS  PubMed  Google Scholar 

  82. Niemeyer, J.C., Nogueira, M.A., Carvalho, G.M., et al., Functional and structural parameters to assess the ecological status of a metal contaminated area in the tropics, Ecotoxicol. Environ. Saf., 2012, vol. 86, pp. 188–197. https://doi.org/10.1016/j.ecoenv.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  83. Tete, N., Durfort, M., Rieffel, D., et al., Histopathology related to cadmium and lead bioaccumulation in chronically exposed wood mice, Apodemus sylvaticus, around a former smelter, Sci. Total Environ., 2014, vol. 481, no. 1, pp. 167–177. https://doi.org/10.1016/j.scitotenv.2014.02.029

    Article  CAS  PubMed  Google Scholar 

  84. Langer, U. and Günther, T., Effects of alkaline dust deposits from phosphate fertilizer production on microbial biomass and enzyme activities in grassland soils, Environ. Pollut., 2001, vol. 112, no. 3, pp. 321–327. https://doi.org/10.1016/s0269-7491(00)00148-2

    Article  CAS  PubMed  Google Scholar 

  85. Mukhacheva, S.V., Changes in the structure and abundance of small mammal communities in the zone of Nornickel Harjavalta nickel refinery (Finland), Mezhd. Zh. Prikl. Fundament. Issled., 2013, vol. 8, pp. 145–148.

    Google Scholar 

  86. Trubina, M.R. and D’yachenko, A.P., Current state of the forest moss layer after reduction of emissions from ther Middle Ural Copper Smelter, Povolzh. Ekol. Zh., 2020, no. 4, pp. 477-491. https://doi.org/10.35885/1684-7318-2020-4-477-491

  87. Kozlov, M.V. and Vorobeichik, E.L., Impact of point polluters on terrestrial ecosystems: Presentation of results in publications, Russ. J. Ecol., 2012, vol. 43, no. 4, pp. 265–272.https://doi.org/10.1134/S1067413612040078

    Article  CAS  Google Scholar 

  88. Grumiaux, F., Demuynck, S., Pernin, C., and Leprêtre, A., Earthworm populations of highly metal-contaminated soils restored by fly ash-aided phytostabilisation, Ecotoxicol. Environ. Saf., 2015, vol. 113, pp. 183–190. https://doi.org/10.1016/j.ecoenv.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  89. Fisker, K.V., Holmstrup, M., and Sørensen, J.G., Variation in metallothionein gene expression is associated with adaptation to copper in the earthworm Dendrobaena octaedra, Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 2013, vol. 157, no. 2, pp. 220–226. https://doi.org/10.1016/j.cbpc.2012.11.007

    Article  CAS  Google Scholar 

  90. McTavish, M.J., Smenderovac, E., Gunn, J., and Murphy, S.D., Insect defoliators in recovering industrial landscapes: Effects of landscape degradation and remediation near an abandoned metal smelter on gypsy moth (Lepidoptera: Lymantriidae) feeding, frass production, and frass properties, Environ. Entomol., 2019, vol. 48, no. 5, pp. 1187–1196. https://doi.org/10.1093/ee/nvz096

    Article  PubMed  Google Scholar 

  91. Nesterkov, A.V., Surface pollution of meadow plants during the period of reduction of atmospheric emissions from a copper smelter, Russ. J. Ecol., 2019, vol. 50, no. 4, pp. 408–412. https://doi.org/10.1134/S106741361904012X

    Article  Google Scholar 

  92. Mukhacheva, S.V., Long-term dynamics of heavy metal concentrations in the food and liver of bank voles (Myodes glareolus) in the period of reduction of emissions from a copper smelter, Russ. J. Ecol., 2017, vol. 48, no. 6, pp. 559–568. https://doi.org/10.1134/S1067413617060078

    Article  CAS  Google Scholar 

  93. Bezel’, V.S. and Mukhacheva, S.V., Geochemical ecology of small mammals at industrially polluted areas: Is there any effect of reduction in the emissions?, Geochem. Int., 2020, vol. 58, no. 8, pp. 959–967. https://doi.org/10.1134/S0016702920070046

    Article  Google Scholar 

  94. Sukhareva, T.A. and Lukina, N.V., Mineral composition of assimilative organs of conifers after reduction of atmospheric pollution in the Kola Peninsula, Russ. J. Ecol., 2014, vol. 45, no. 2, pp. 95–102. https://doi.org/10.1134/S1067413614020088

    Article  CAS  Google Scholar 

  95. Lyanguzova, I.V., Dynamic trends of heavy metal contents in plants and soil under different industrial air pollution regimes, Russ. J. Ecol., 2017, vol. 48, no. 4, pp. 311–320. https://doi.org/10.1134/S1067413617040117

    Article  CAS  Google Scholar 

  96. Barkan, V.Sh. and Lyanguzova, I.V., Concentration of heavy metals in dominant moss species as an indicator of aerial technogenic load, Russ. J. Ecol., 2018, vol. 49, no. 2, pp. 128–134. https://doi.org/10.1134/S1067413618020030

    Article  CAS  Google Scholar 

  97. Koptsik, G.N., Koptsik, S.V., Smirnova, I.E., et al., Responses of forest ecosystems to reduction of industrial emissions to the atmosphere in the Kola Subarctic, Zh. Obshch. Biol., 2016, vol. 77, no. 2, pp. 145–163.

    CAS  PubMed  Google Scholar 

  98. Berglund, Å.M.M., Rainio, M.J., and Eeva, T., Decreased metal accumulation in passerines as a result of reduced emissions, Environ. Toxicol. Chem., 2012, vol. 31, no. 6, pp. 1317–1323. https://doi.org/10.1002/etc.1814

    Article  CAS  PubMed  Google Scholar 

  99. Berglund, Å.M.M., Rainio, M.J., and Eeva, T., Temporal trends in metal pollution: Using bird excrement as indicator, PLoS One, 2015, vol. 10, no. 2, e0117071. https://doi.org/10.1371/journal.pone.0117071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Berglund, Å.M.M., Klaminder, J., and Nyholm, N.E.I., Effects of reduced lead deposition on pied flycatcher (Ficedula hypoleuca) nestlings: Tracing exposure routes using stable lead isotopes, Environ. Sci. Technol., 2009, vol. 43, no. 1, pp. 208–213. https://doi.org/10.1021/es801723q

    Article  CAS  PubMed  Google Scholar 

  101. Douay, F., Roussel, H., Pruvot, C., and Waterlot, C., Impact of a smelter closedown on metal contents of wheat cultivated in the neighbourhood, Environ. Sci. Pollut. Res., 2008, vol. 15, no. 2, pp. 162–169. https://doi.org/10.1065/espr2006.12.366

    Article  CAS  Google Scholar 

  102. Westerheim, A., Steinnes, E., and Sjobakk, T., Metal uptake in plants along a pollution gradient from a metal smelter, Journal de Physique IV, 2003, vol. 107, pp. 1369–1371. https://doi.org/10.1051/jp4:20020556

    Article  CAS  Google Scholar 

  103. Brougham, K.M., Roberts, S.R., Davison, A.W., and Port, G.R., The impact of aluminium smelter shut-down on the concentration of fluoride in vegetation and soils, Environ. Pollut., 2013, vol. 178, pp. 89–96. https://doi.org/10.1016/j.envpol.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  104. Evdokimova, G.A. and Mozgova, N.P., Comparative estimation of soil and plant pollution in the impact area of air emissions from an aluminium plant after technogenic load reduction, J. Environ. Sci. Health A: Toxic/Hazard. Subst. Environ. Eng., 2015, vol. 50, no. 6, pp. 547–552. https://doi.org/10.1080/10934529.2015.994937

    Article  CAS  Google Scholar 

  105. Nyholm, N.E.I. and Rühling, Å., Effects of decreased atmospheric heavy metal deposition in South Sweden on terrestrial birds and small mammals in natural populations, Water Air Soil Pollut. Focus, 2001, vol. 1, no. 3, pp. 439–448. https://doi.org/10.1023/A:1017582305685

    Article  CAS  Google Scholar 

  106. Kozlov, M.V., Haukioja, E., Bakhtiarov, A.V., et al., Root versus canopy uptake of heavy metals by birch in an industrially polluted area: Contrasting behaviour of nickel and copper, Environ. Pollut., 2000, vol. 107, no. 3, pp. 413–420. https://doi.org/10.1016/S0269-7491(99)00159-1

    Article  CAS  PubMed  Google Scholar 

  107. Vorobeichik, E.L. and Kaigorodova, S.Yu., Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission, Euras. Soil Sci., 2017, vol. 50, no. 8, pp. 977–990. https://doi.org/10.1134/S1064229317080130

    Article  CAS  Google Scholar 

  108. Lyanguzova, I.V., Gol’dvirt, D.K., and Fadeeva, I.K. Spatiotemporal dynamics of the pollution of Al–Fe-humus podzols in the impact zone of a nonferrous metallurgical plant, Euras. Soil Sci., 2016, vol. 49, no. 10, pp. 1189–1203. https://doi.org/10.7868/S0032180X16100105

    Article  CAS  Google Scholar 

  109. Kashulina, G.M., Monitoring of soil contamination by heavy metals in the impact zone of copper-nickel smelter on the Kola Peninsula, Euras. Soil Sci., 2018, vol. 51, no. 4, pp. 467–478. https://doi.org/10.1134/S1064229318040063

  110. Ershov, B.B., Lukina, H.B., Orlova, M.A., et al., Assessment of soil-water composition dynamics in the north taiga forests upon the reduction of industrial air pollution by emissions of a copper–nickel smelter, Contemp. Probl. Ecol., 2019, vol. 12, no. 1, pp, 97–109.

  111. Gundermann, D.G. and Hutchinson, T.C., Changes in soil chemistry 20 years after the closure of a nickel copper smelter near Sudbury, Ontario, Canada, J. Geochem. Explor., 1995, vol. 52, nos. 1–2, pp. 231–236. https://doi.org/10.1016/0375-6742(94)00026-8

    Article  CAS  Google Scholar 

  112. Hutchinson, T.C. and Gunderman, D., The contamination and recovery of natural ecosystems by smelting and mining activities at Sudbury, Ontario, in Air Pollution in the Ural Mountains, Linkov, I. and Wilson, R., Eds., Dordrecht, 1998, pp. 363–373.

    Google Scholar 

  113. Kabala, C., Chodak, T., and Szerszen, L., Influence of land use pattern on changes in copper content in soils around a copper smelter, based on a 34-year monitoring cycle, Zemes Ukio Mokslai, 2008, vol. 15, no. 3, pp. 8–12.

    Google Scholar 

  114. Buchauer, M.J., Contamination of soil and vegetation near a zinc smelter by zinc, cadmium, copper, and lead, Environ. Sci. Technol., 1973, vol. 7, no. 2, pp. 131–135. https://doi.org/10.1021/es60074a004

    Article  CAS  Google Scholar 

  115. Storm, G.L., Fosmire, G.J., and Bellis, E.D., Persistence of metals in soil and selected vertebrates in the vicinity of the Palmerton zinc smelters, J. Environ. Quality, 1994, vol. 23, no. 3, pp. 508–514. https://doi.org/10.2134/jeq1994.00472425002300030015x

    Article  CAS  Google Scholar 

  116. McMartin, I., Henderson, P.J., Plouffe, A., and Knight, R.D., Comparison of Cu-Hg-Ni-Pb concentrations in soils adjacent to anthropogenic point sources: Examples from four Canadian sites, Geochem.: Explor. Environ. Anal., 2002, vol. 2, no. 1, pp. 57–73. https://doi.org/10.1144/1467-787302-007

    Article  CAS  Google Scholar 

  117. Evdokimova, G.A., Mozgova, N.P., and Korneikova, M.V., The Content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganikel Plant, Euras. Soil Sci., 2014, vol. 47, no. 5, pp. 504–510. https://doi.org/10.1134/S1064229314050044

    Article  CAS  Google Scholar 

  118. Koptsik, G.N., Nedbaev, N.P., Koptsik, S.V., and Pavlyuk, I.N., Heavy metal pollution of forest soils by atmospheric emissions of Pechenganikel Smelter, Eyras. Soil Sci., 1998, vol. 31, no. 8, pp. 896–903.

    Google Scholar 

  119. Maskall, J., Whitehead, K., and Thornton, I., Heavy metal migration in soils and rocks at historical smelting sites, Environ. Geochem. Health, 1995, vol. 17, no. 3, pp. 127–138.

    Article  CAS  Google Scholar 

  120. Camizuli, E., Scheifler, R., Garnier, S., et al., Trace metals from historical mining sites and past metallurgical activity remain bioavailable to wildlife today, Sci. Rep., 2018, vol. 8, no. 1, art. 3436. https://doi.org/10.1038/s41598-018-20983-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Baron, S., Carignan, J., and Ploquin, A., Dispersion of heavy metals (metalloids) in soils from 800-year-old pollution (Mont-Lozere, France), Environ. Sci. Technol., 2006, vol. 40, no. 17, pp. 5319–5326. https://doi.org/10.1021/es0606430

    Article  CAS  PubMed  Google Scholar 

  122. Eklund, M. and Hakansson, K., Distribution of cadmium, copper and zinc emitted from a Swedish copperworks, 1750–1900, J. Geochem. Explor., 1997, vol. 58, nos. 2–3, pp. 291–299. https://doi.org/10.1016/S0375-6742(96)00058-1

    Article  CAS  Google Scholar 

  123. Testiati, E., Parinet, J., Massiani, C., et al., Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: Evaluation of the phytostabilization potential, J. Hazard. Mater., 2013, vol. 248-249, pp. 131–141. https://doi.org/10.1016/j.jhazmat.2012.12.039

    Article  CAS  PubMed  Google Scholar 

  124. Kierczak, J., Potysz, A., Pietranik, A., et al., Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland), J. Geochem. Explor., 2013, vol. 124, pp. 183–194. https://doi.org/10.1016/j.gexplo.2012.09.008

    Article  CAS  Google Scholar 

  125. Rabinowitz, M.B., Lead isotopes in soils near five historic American lead smelters and refineries, Sci. Total Environ., 2005, vol. 346, nos. 1–3, pp. 138–148. https://doi.org/10.1016/j.scitotenv.2004.11.021

    Article  CAS  PubMed  Google Scholar 

  126. Hahn, J., Mann, B., Bange, U., and Kimmel, M., Horizon-specific effects of heavy metal mobility on nitrogen binding forms in forest soils near a historic smelter (Germany), Geoderma, 2019, vol. 355, art. 113895. https://doi.org/10.1016/j.geoderma.2019.113895

    Article  CAS  Google Scholar 

  127. Clemente, R., Dickinson, N.M., and Lepp, N.W., Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity, Environ. Pollut., 2008, vol. 155, no. 2, pp. 254–261. https://doi.org/10.1016/j.envpol.2007.11.024

    Article  CAS  PubMed  Google Scholar 

  128. Douay, F., Pruvot, C., Waterlot, C., et al., Contamination of woody habitat soils around a former lead smelter in the north of France, Sci. Total Environ., 2009, vol. 407, no. 21, pp. 5564–5577. https://doi.org/10.1016/j.scitotenv.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  129. Gerstner, K., Moreno-Mateos, D., Gurevitch, J., et al., Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting, Methods Ecol. Evol., 2017, vol. 8, no. 6, pp. 777–784. https://doi.org/10.1111/2041-210X.12758

    Article  Google Scholar 

  130. Svendsen, M.L., Steinnes, E., and Blom, H.A., Vertical and horizontal distributions of Zn, Cd, Pb, Cu, and Hg in uncultivated soil in the vicinity of a zinc smelter at Odda, Norway, Soil Sediment Contam., 2007, vol. 16, no. 6, pp. 585–603. https://doi.org/10.1080/15320380701623644

    Article  CAS  Google Scholar 

  131. Meli, P., Holl, K.D., Rey, BenayasJ.M., et al., A global review of past land use, climate, and active vs. passive restoration effects on forest recovery, PLoS One, 2017, vol. 12, no. 2, e0171368. https://doi.org/10.1371/journal.pone.0171368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jones, H.P. and Schmitz, O.J., Rapid recovery of damaged ecosystems, PLoS One, 2009, vol. 4, no. 5, e5653. https://doi.org/10.1371/journal.pone.0005653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jones, H.P., Jones, P.C., Barbier, E.B., et al., Restoration and repair of earth’s damaged ecosystems, Proc. R. Soc. Lond., Ser. B: Biol. Sci, 2018, vol. 285, no. 1873, art. 20172577.

Download references

ACKNOWLEDGMENTS

I am grateful to E.A. Bel’skaya, E.A. Bel’skii, I.E. Bergman, D.V. Veselkin, Yu.A. Davydova, I.N. Korkina, I.N. Mikhailova, S.V. Mukhacheva, G.Yu. Smirnov, T.V. Strukova, and M.R. Trubina for discussion and comments on the article.

Funding

This review was supported by the Russian Foundation for Basic Research (Project no. 20-14-50025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Vorobeichik.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobeichik, E.L. Natural Recovery of Terrestrial Ecosystems after the Cessation of Industrial Pollution: 1. A State-of-the-Art Review. Russ J Ecol 53, 1–39 (2022). https://doi.org/10.1134/S1067413622010118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413622010118

Keywords:

Navigation