Skip to main content
Log in

Bacterial community changes during fir needle litter decomposition in an alpine forest in eastern Tibetan Plateau

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Bacterial community plays an important role in litter decomposition. Although the changes of bacterial community as litter decomposition proceeding can be regulated by frozen temperature and changed litter quality in cold regimes, little information has been available on. Therefore, the structure and diversity of the bacterial community in Minjiang fir (Abies faxoniana) needle litter were measured in an alpine forest in eastern Tibetan Plateau. The litter samples were sampled at the onset of the freezing stage, the deep freezing stage, the thawing stage, the early growing season and the late growing season from December 2010 to November 2011. The methods of real-time polymerase chain reaction (qPCR) coupled with denaturing gradient gel electrophoresis (DGGE) were used. The copy numbers of bacterial 16S rDNA in the fir needle litter changed significantly as litter decomposition proceeding. The abundance of bacterial 16S rDNA was significantly lower at the deep freezing stage but highest at the thawing stage. A large number of bands were observed on the DGGE gel; the intensities and distances of the bands were significantly different among the samples at different stages; the indexes of bacterial diversity at the onset of the freezing and deep freezing stages were lower than them at the other stages. All of the bacterial sequences were affiliated with six distinct classes and an unknown group. Redundancy analysis indicated that moisture, mass loss and the release of litter elements (e.g., C, N, P) exerted obvious influences over the bacterial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts, R., Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystem: A triangular relationship, Oikos, 1997, vol. 79, pp. 439–449.

    Article  Google Scholar 

  • Aerts, R., The freezer defrosting: Global warming and litter decomposition rates in cold biomes, J. Ecol., 2006, vol. 94, pp. 713–724.

    Article  Google Scholar 

  • Aerts, R. and de Caluwe, H., Nutritional and plant-mediated controls on leaf litter decomposition of Carex species, Ecology, 1997, vol. 78, pp. 244–260.

    Article  Google Scholar 

  • Altschul, S.F., Gish, W., Miller, W., et al., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Baptist, F., Yoccoz, N.G., and Choler, P., Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient, Plant Soil, 2010, vol. 328, pp. 397–410.

    Article  CAS  Google Scholar 

  • Berg, B., Litter decomposition and organic matter turnover in northern forest soils, Forest Ecol. Manag., 2000, vol. 133, pp. 13–22.

    Article  Google Scholar 

  • Berg, B. and McClaugherty, C., Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, 2nd ed., New York: Springer, 2008.

    Book  Google Scholar 

  • Bokhorst, S., Bjerke, J.W., Melillo, J., et al., Impacts of extreme winter warming events on litter decomposition in a Sub-Arctic heathland, Soil Biol. Biochem., 2010, vol. 42, pp. 611–617.

    Article  CAS  Google Scholar 

  • Brookes, P.C., Powlson, D.S., and Jenkinson, D.S., Measurement of microbial biomass phosphorus in soil, Soil Biol. Biochem., 1982, vol. 14, pp. 319–329.

    Article  CAS  Google Scholar 

  • Brookes, P.C., Landman, A., Pruden, G., et al., Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil, Soil Biol. Biochem., 1985, vol. 17, pp. 837–842.

    Article  CAS  Google Scholar 

  • Campbell, J.L., Mitchell, M.J., Groffman, P.M., et al., Winter in northeastern North America: A critical period for ecological processes, Front. Ecol. Environ., 2005, vol. 3, pp. 314–322.

    Article  Google Scholar 

  • Clein, J.S. and Schimel, J.P., Microbial activity of tundra and taiga soils at sub-zero temperatures, Soil Biol. Biochem., 1995, vol. 27, pp. 1231–1234.

    Article  CAS  Google Scholar 

  • Coakley, S.M., Boyd, W.S., and Line R.F., Statistical models for predicting stripe rust on winter wheat in the Pacific Northwest, Phytopathology, 1982, vol. 72, pp. 1539–1542.

    Article  Google Scholar 

  • Deng, R.J., Yang, W.Q., Feng, R.F., Hu, J.L., Qin, J.L., and Xiong, X.J., Mass loss and element release of litter in the subalpine forest over one freeze–thaw season, Acta Ecol. Sinica, 2009, vol. 29, pp. 5731–5735.

    Google Scholar 

  • Deslippe, J.R., Hartmann, M., Simard, S.W., et al., Longterm warming alters the composition of Arctic soil microbial communities, FEMS Microbiol. Ecol., 2012, vol. 82, pp. 303–315.

    Article  CAS  PubMed  Google Scholar 

  • Didham, R.K., Altered leaf-litter decomposition rates in tropical forest fragments, Oecologia, 1998, vol. 116, pp. 397–406.

    Article  Google Scholar 

  • Dilly, O., Bloem, J., Vos, A., et al., Bacterial diversity in agricultural soils during litter decomposition, Appl. Environ. Microbiol., 2004, vol. 70, pp. 468–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drotz, S.H., Sparrman, T., Nilsson, M.B., et al., Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 21046–21051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, Z.T., Zhang, G.L., and Chen, Z.C., Pedogenesis and Soil Taxonomy, Beijing: Beijing Sci. Press, 2007.

    Google Scholar 

  • Groffman, P.M., Driscoll, C.T., Fahey, T.J., et al., Effects of mild winter freezing on soil nitrogen and carbon dynamics in northern hardwood forest, Biogeochemistry, 2001, vol. 56, pp. 191–213.

    Article  CAS  Google Scholar 

  • Guan, Z.Y., Zhao, Y., and Tong, X.L., Effect of polyphenol of leaf litter on the leaf breakdown in a subtropical stream, Ecol. Sci., 2008, vol. 27, pp. 436–439.

    Google Scholar 

  • Hättenschwiler, S., Tiunov, A.V., and Scheu, S., Biodiversity and litter decomposition in terrestrial ecosystems, Annu. Rev. Ecol. Evol. Syst., 2005, vol. 36, pp. 191–218.

    Article  Google Scholar 

  • He, W., Wu, F.Z., Yang, W.Q., et al., Effect of snow patches to mass loss of two shrubs leaf litter in alpine forest, Chin. J. Plant. Ecol., 2013, vol. 37, pp. 306–316.

    Article  CAS  Google Scholar 

  • Hentschel, K., Borken, W., and Matzner, E., Repeated freeze–thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil, J. Plant Nutr. Soil Sci., 2008, vol. 171, pp. 699–706.

    Article  CAS  Google Scholar 

  • Herrmann, A., and Witter, E., Sources of C and N contributing to the flush in mineralization upon freeze–thaw cycles in soils, Soil Biol. Biochem., 2002, vol. 34, pp. 1495–1505.

    Article  CAS  Google Scholar 

  • Hobbie, S.E., Temperature and plant species control over litter decomposition in Alaskan tundra, Ecol. Monogr., 1996, vol. 66, pp. 503–522.

    Article  Google Scholar 

  • Hobbie, S.E., and Chapin III, F.S., Winter regulation of tundra litter carbon and nitrogen dynamics, Biogeochemistry, 1996, vol. 35, pp. 327–338.

    Article  Google Scholar 

  • IUSS Working group, World Reference Base for Soil Resources 2006, First Update 2007, World Soil Resources Report no. 103, 2007.

  • Jiang, H., Dong, H., Zhang, G., et al. Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China, Appl. Environ. Microbiol., 2006, vol. 72, pp. 3832–3845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan, C.F., The nutrient balance of an Amazonian rain forest, Ecology, 1982, vol. 63, pp. 647–654.

    Article  CAS  Google Scholar 

  • Kayastha, R.B., Ageta, Y., Nakawo, M., et al., Positive degree–day factors for ice ablation on four glaciers in the Nepalese Himalayas and Qinghai-Tibetan Plateau, Bull. Glaciol. Res., 2003, vol. 20, pp. 7–14.

    Google Scholar 

  • Keane, R.B., Biophysical controls on surface fuel litterfall and decomposition in the northern Rocky Mountains, USA, Can. J. Forest Res., 2008, vol. 38, pp. 1431–1445.

    Article  Google Scholar 

  • Konstantin, S.G., Dynamics of alpine plant litter decomposition in a changing climate, Plant Soil, 2010, vol. 337, pp. 19–32.

    Article  Google Scholar 

  • Korkama-Rajala, T., Müller, M.M., and Pennanen, T., Decomposition and fungi of needle litter from slow- and fast-growing Norway spruce (Picea abies) clones, Microb. Ecol., 2008, vol. 56, pp. 76–89.

    Article  PubMed  Google Scholar 

  • Lane, D.J., 16S/23S rRNA sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M. (Eds.), Chichester: Wiley, 1991, pp. 125–175.

    Google Scholar 

  • Lipson, D.A., and Schmidt, S.K., Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains, Appl. Environ. Microbiol., 2004, vol. 70, pp. 2867–2879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipson, D.A., Schadt, C.W., and Schmidt, S.K., Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt, Microb. Ecol., 2002, vol. 43, pp. 307–314.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Ecological Research on Subalpine Coniferous Forests in China, Chengdu: Sichuan Univ. Press, 2002.

    Google Scholar 

  • Liu, L., Wu, F.Z., Yang, W.Q., et al. Soil bacterial diversity in the subalpine/alpine forests of western Sichuan at the early stage of freeze–thaw season, Acta Ecol. Sinica, 2010, vol. 30, pp. 5687–5694.

    CAS  Google Scholar 

  • Loranger, G., Ponge, J.F., Imbert, D., et al., Leaf decomposition in two semi-evergreen tropical forests: Influence of litter quality, Biol. Fertil. Soils, 2002, vol. 35, pp. 247–252.

    Article  CAS  Google Scholar 

  • Lu, R.K., Soil and Agrochemical Analytical Methods, Beijing, China: Agricultural Science and Technology Press, 1999, pp. 227–448.

    Google Scholar 

  • Mackelprang, R., Waldrop, M.P., DeAngelis, K.M., et al., Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw, Nature, 2011, 480, pp. 368–371.

    Article  CAS  PubMed  Google Scholar 

  • Morel, C., Tiessen, H., and Stewart, J.W.B., Correction for P-sorption in the measurement of soil microbial biomass P by CHCl3 fumigation, Soil Biol. Biochem., 1996, vol. 28, pp. 1699–1706.

    Article  CAS  Google Scholar 

  • Müller, M., Alewell, C., and Hagedorn, F., Effective retention of litter-derived dissolved organic carbon in organic layers, Soil Biol. Biochem., 2009, vol. 41, pp. 1066–1074.

    Article  Google Scholar 

  • Muyzer, G., De Waal, E.C., and Uitterlinden, A.G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction- amplified genes coding for 16S rRNA, Appl. Environ. Microbiol., 1993, vol. 59, pp. 695–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neff, J.C. and Asner, G.P., Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model, Ecosystems, 2001, vol. 4, pp. 29–48.

    Article  CAS  Google Scholar 

  • Neufeld, J.D., Yu, Z., Lam, W., et al., Serial Analysis of Ribosomal Sequence Tags (SARST): A high-throughput method for profiling complex microbial communities, Environ. Microbiol., 2004, vol. 6, pp. 131–144.

    Article  CAS  PubMed  Google Scholar 

  • Okano, Y., Hristova, K.R., Leutenegger, C.M., et al., Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil, Appl. Environ. Microbiol., 2004, vol. 70, pp. 1008–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J.H. and Matzner, E., Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux, Biogeochemistry, 2003, vol. 66, pp. 265–286.

    Article  CAS  Google Scholar 

  • Schadt, C.W., Martin, A.P., Lipson, D.A., et al., Seasonal dynamics of previously unknown fungal lineages in tundra soils, Science, 2003, vol. 301, pp. 1359–1361.

    Article  CAS  PubMed  Google Scholar 

  • Shivaji, S., Reddy, G.S., Aduri, R.P.,et al., Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica, Cell Mol. Biol., 2004, vol. 50, pp. 525–536.

    CAS  PubMed  Google Scholar 

  • Stone, M.M., Kan, J.J., and Plante, A.F., Parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory, Soil Biol. Biochem., 2015, vol. 80, pp. 273–282.

    Article  CAS  Google Scholar 

  • Swan, B.K., Ehrhardt, C.J., Reifel, K.M., et al., Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea, Appl. Environ. Microbiol., 2010, vol. 76, pp. 757–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., et al., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Tan, B., Wu, F.Z., Yang, W.Q., et al., Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan during onset of freezing, Acta Ecol. Sinica, 2010, vol. 30, pp. 93–99.

    Article  Google Scholar 

  • Tan, B., Wu, F.Z., Yang, W.Q., et al., Snow removal alters soil microbial biomass and enzyme activity in a Tibetan alpine forest, Appl. Soil Ecol., 2014, vol. 76, pp. 34–41.

    Article  Google Scholar 

  • Taylor, B.R., Parkinson, D., and Parsons, W.F., Nitrogen and lignin content as predictors of litter decay rates: Amicrocosm test, Ecology, 1989, vol. 70, pp. 97–104.

    Article  Google Scholar 

  • Taylor, J.P., Wilson, B., Mills, M.S., et al., Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques, Soil Biol. Biochem., 2002, vol. 34, pp. 387–401.

    Article  CAS  Google Scholar 

  • Thoms, C. and Gleixner, G., Seasonal differences in tree species’ influence on soil microbial communities, Soil Biol. Biochem., 2013, vol. 66, pp. 239–248.

    Article  CAS  Google Scholar 

  • Uchida, M., Mo, W., Nakatsubo, T., et al., Microbial activity and litter decomposition under snow cover in a cooltemperate broad-leaved deciduous forest, Agr. Forest Meteorol., 2005, vol. 134, pp. 102–109.

    Article  Google Scholar 

  • Vance, E.D., Brookes, P.C., and Jenkinson, D.S., Microbial biomass measurements in forest soils: The use of the chloroform fumigation incubation method in strongly acid soils, Soil Biol. Biochem., 1987, vol. 19, pp. 697–702.

    Article  CAS  Google Scholar 

  • Walker, V.K., Palmer, G.R., and Voordouw, G., Freeze–thaw tolerance and clues to the winter survival of a soil community, Appl. Environ. Microbiol., 2006, vol. 72, pp. 1784–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, A., Effect of seasonal freeze–thaw on soil microbial and biochemical property in alpine forest soil, Doctoral Dissertation, Sichuan Agricultural University, 2012.

    Google Scholar 

  • Wang, A., Zhang, J., Yang, W.Q., et al., Bacterial diversity in organic soil layers of subalpine and alpine forests at the end of freeze–thaw periods, J. Beijing Forestry Univ., 2010, vol. 32, pp. 144–150.

    Google Scholar 

  • Wang, A., Wu, F.Z., Yang, W.Q., et al., Abundance and composition dynamics of soil ammonia-oxidizing archaea in an alpine fir forest on the eastern Tibetan Plateau of China, Can. J. Microbiol., 2012, vol. 58, pp. 572–580.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm, R.C., Niederberger, T.D., Greer, C., et al., Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic, Can. J. Microbiol., 2011, vol. 57, pp. 303–315.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, S.L. and Walker, V.K., Selection of low-temperature resistance in bacteria and potential applications, Environ. Technol., 2010, vol. 31, pp. 943–956.

    Article  CAS  PubMed  Google Scholar 

  • Wu, F.Z., Yang, W.Q., Zhang, J., and Deng, R.J., Litter decomposition in two subalpine forests during the freeze–thaw season. Acta Oecol., 2010, vol. 36, pp. 135–140.

    Article  Google Scholar 

  • Wu, Q.Q., Wu, F.Z., Yang, W.Q., et al., Effect of seasonal snow cover on litter decomposition in the alpine forest, Chin. J. Plant Ecol., 2013, vol. 37, pp. 296–305.

    Article  Google Scholar 

  • Xia, L., Wu, F.Z., and Yang, W.Q., Contribution of soil fauna to mass loss of Abies faxoniana leaf litter during the freeze–thaw season, Chin. J. Plant Ecol., 2011, vol. 35, pp. 1127–1135.

    Article  Google Scholar 

  • Yang, W.Q., Wang, K.Y., Kellomäki, S., et al., Litter dynamics of three subalpine forests in Western Sichuan, Pedosphere, 2005, vol. 15, pp. 653–659.

    Google Scholar 

  • Yang, W.Q., Wang, K.Y., and Kellomäki, S., et al., Annual and monthly variations in litter macronutrients of three subalpine forests in western China, Pedosphere, 2006, vol. 16, pp. 788–798.

    Article  CAS  Google Scholar 

  • Yang, W.Q., Feng, R.F., Zhang, J., et al., Carbon stock and biochemical properties in the organic layer and mineral soil under three subalpine forests in Western China, Acta Ecol. Sinica., 2007, vol. 27, pp. 4157–4165.

    CAS  Google Scholar 

  • Young, I.M. and Crawford, J.W., Interactions and selforganization in the soil–microbe complex, Science, 2004, vol. 304, pp. 1634–1637.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J.X., He, X.H., Wu, F.Z., et al., Decomposition of Abies faxoniana litter varies with freeze–thaw stages and altitudes in subalpine/alpine forests of southwest China, Scand. J. Forest Res., 2012, vol. 27, pp. 586–596.

    Article  Google Scholar 

  • Zhu, J.X., Yang, W., and He, X.H., Temporal dynamics of abiotic and biotic factors on leaf litter of three plant species in relation to decomposition rate along a subalpine elevation gradient, PLOS ONE, 2013, vol. 8, no. 4, e62073. doi 10.1371/journal.pone.0062073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinger, L., Shahnavaz, B., Baptist, F., et al., Microbial diversity in alpine tundra soils correlates with snow cover dynamics, ISME J., 2009, vol. 3, pp. 850–859.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanqin Yang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wu, F., Yang, W. et al. Bacterial community changes during fir needle litter decomposition in an alpine forest in eastern Tibetan Plateau. Russ J Ecol 47, 145–157 (2016). https://doi.org/10.1134/S1067413616020156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413616020156

Keywords