Skip to main content
Log in

Application of Generalized Butterworth Polynomials for Stabilization of the Equilibrium Position of a Space Station

  • CONTROL SYSTEMS OF MOVING OBJECTS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

The problem of searching for and holding the International Space Station in a position of dynamic equilibrium is considered. The equilibrium orientation of the International Space Station (ISS) is determined by the superposition of gravitational, gyroscopic, and aerodynamic moments acting on it. The system of powered gyroscopes installed on the space station plays the role of effectors in this task. Using this example as an example, we consider the possibility of applying the method of the sequential closure of the modes of motion to synthesize the multi-input multi-output (MIMO) control law, a multidimensional multiply connected dynamic system. It is proposed to use the generalized Butterworth polynomial as the reference polynomial determining the location of the poles of the closed system. Using the mathematical modeling of the control system in the search mode and maintaining the dynamic equilibrium, the advantage of using the generalized Butterworth polynomials in comparison with the classical Butterworth polynomials is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. V. Sumarokov, “The onboard algorithm for averaging the orbital motion parameters of the International Space Station in the ICARUS experiment,” J. Comput. Syst. Sci. Int. 57, 273 (2018).

    Article  Google Scholar 

  2. F. A. Voronin, D. S. Nazarov, P. A. Pakhmutov, et al., “On principles behind developing software for the information and control system of the Russian orbital segment of the International Space Station,” Vestn. MGTU im. N. E. Baumana, Ser. Priborostr., No. 2, 69–86 (2018).

  3. M. Yu. Belyaev, L. V. Desinov, D. Yu. Karavaev, et al., “Features of imaging the Earth surface and using the results of the imaging made by the ISS Russian segment crews,” Kosm. Tekh. Tekhnol., No. 1, 17–30 (2015).

  4. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, V. N. Ryabchenko, S. N. Timakov, and E. A. Cheremnykh, “Identification of the position of an equilibrium attitude of the International Space Station as a problem of stable matrix completion,” J. Comput. Syst. Sci. Int. 51, 291 (2012).

    Article  Google Scholar 

  5. V. N. Platonov and A. V. Sumarokov, “Studying the possibility of ensuring the stabilization accuracy characteristics of an advanced spacecraft for remote sensing of the Earth,” J. Comput. Syst. Sci. Int. 57, 655 (2018).

    Article  Google Scholar 

  6. S. N. Timakov, K. A. Bogdanov, and S. E. Nefedov, “Sequential closing method for modes of movement for multidimensional, multilinked dynamical systems,” Vestn. MGTU im. N. E. Baumana, Ser. Priborostr., No. 5, 40–59 (2014).

  7. N. Yu. Borisenko and A. V. Sumarokov, “On the rapid orbital attitude control of manned and cargo spacecraft Soyuz MS and Progress MS,” J. Comput. Syst. Sci. Int. 56, 886 (2017).

    Article  Google Scholar 

  8. A. V. Sumarokov and S. N. Timakov, “On an adaptive control system for angular motion of a communication satellite,” J. Comput. Syst. Sci. Int. 47, 795 (2008).

    Article  Google Scholar 

  9. V. N. Branets, V. N. Platonov, A. V. Sumarokov, and S. N. Timakov, “Stabilization of a wheels carrying communication satellite without angle and angular velocity sensors,” J. Comput. Syst. Sci. Int. 47, 118 (2008).

    Article  MathSciNet  Google Scholar 

  10. D. A. Efimov, A. V. Sumarokov, and S. N. Timakov, “On the stabilization of a communication satellite without measuring its angular velocity,” J. Comput. Syst. Sci. Int. 51, 732 (2012).

    Article  MathSciNet  Google Scholar 

  11. J. T. Harduvel, “Continuous momentum management of Earth-oriented spacecraft,” J. Guidance, Control Dyn. 15, 1417–1426 (1992).

    Article  Google Scholar 

  12. B. Wie et al., “A new momentum management controller for the space station,” J. Guidance, Control Dyn. 12, 714–722 (1989).

    Article  MathSciNet  Google Scholar 

  13. W. Warren, B. Wie, and D. Geller, “Periodic-disturbance accommodating control of the space station for asymptotic momentum management,” J. Guidance, Control Dyn. 13, 984–992 (1990).

    Article  Google Scholar 

  14. A. A. Voronov, Theory of Automatic Control, Part 1 (Vyssh. Shkola, Moscow, 1986) [in Russian].

    Google Scholar 

  15. H. Kwakernaak and R. Sivan, Linear Optimal Control Systems (Wiley-Interscience, New York, 1977).

    MATH  Google Scholar 

  16. A. B. Filimonov and N. B. Filimonov, “Concerning the problem of nonrobust of spectrum in tasks of modal control,” Mekhatron., Avtomatiz. Upravl., No. 10, 8–13 (2011).

  17. B. P. Demidovich, Lectures on the Mathematical Theory of Stability (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

  18. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, and V. N. Ryabchenko, “Synthesis of decoupling laws for attitude stabilization of a spacecraft,” J. Comput. Syst. Sci. Int. 51, 80 (2012).

    Article  MathSciNet  Google Scholar 

  19. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, and V. N. Ryabchenko, “Modification of the exact pole placement method and its application for the control of spacecraft motion,” J. Comput. Syst. Sci. Int. 52, 279 (2013).

    Article  MathSciNet  Google Scholar 

  20. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, and V. N. Ryabchenko, “Stabilization of coupled motions of an aircraft in the pitch–yaw channels in the absence of information about the sliding angle: Analytical synthesis,” J. Comput. Syst. Sci. Int. 54, 93 (2015).

    Article  MathSciNet  Google Scholar 

  21. M. Sh. Misrikhanov and V. N. Ryabchenko, “Pole placement in large dynamical systems with many inputs and outputs,” Dokl. Math. 84, 1 (2011).

    Article  MathSciNet  Google Scholar 

  22. N. E. Zubov, E. Yu. Zybin, E. A. Mikrin, M. Sh. Misrikhanov, A. V. Proletarskii, and V. N. Ryabchenko, “Output control of a spacecraft motion spectrum,” J. Comput. Syst. Sci. Int. 53, 576 (2014).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project nos. 17-08-01635, 18-08-01379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sumarokov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, K.A., Zykov, A.V., Subbotin, A.V. et al. Application of Generalized Butterworth Polynomials for Stabilization of the Equilibrium Position of a Space Station. J. Comput. Syst. Sci. Int. 59, 451–465 (2020). https://doi.org/10.1134/S106423072003003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106423072003003X

Navigation