Skip to main content
Log in

Multistructural Method of the Triangulation Estimation of the Motion Parameters of a Radiating Target under A Priori Indefiniteness Assumptions

  • CONTROL IN STOCHASTIC SYSTEMS AND UNDER UNCERTAINTY CONDITIONS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

Based on the multistructuredness and clustering principles, as well as the filtration theory, we develop a new estimation method for the motion parameters of a radiating target under the assumption of a fundamental indefiniteness of the operating conditions for the triangulation measurement system. The method admits anomalous measurement errors in the measurement channels (the azimuth and the angle of elevation) of particular system locators such that neither the number of uncertain channels neither the time moments of the appearance of these errors are known (only the greatest possible number of uncertain channels is known). The method is implemented in the stochastic variant with or without the participation of an operator. The implementation does not require the traditional extension of the space of states. We provide the results of the comparative analysis demonstrating the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. G. Saibel’, Fundamentals of the Theory of Accuracy of Radio-Technical Methods of Positioning (Oborongiz, Moscow, 1958) [in Russian].

    Google Scholar 

  2. I. S. Kukes and M. E. Starik, Basics of Radio Direction Finding (Sov. Radio, Moscow, 1964) [in Russian].

    Google Scholar 

  3. Theoretical Foundations of Radiolocation, Ed. by Ya. Shirman (Sov. Radio, Moscow, 1970) [in Russian].

    Google Scholar 

  4. V. S. Kondrat’ev, A. F. Kotov, and L. N. Markov, Multipoint Radiotechnical Systems (Radio Svyaz’, Moscow, 1986) [in Russian].

    Google Scholar 

  5. V. S. Chernyak, Multipoint Radiolocation (Radio Svyaz’, Moscow, 1993) [in Russian].

    Google Scholar 

  6. V. A. Botov, V. E. Zhuravlev, and A. N. Krenev, “Comparative analysis of radio source position finding techniques,” Radiotekhnika, No. 2, 28–32 (2006).

    Google Scholar 

  7. Yu. V. Bolotin, “The generalized least squares method in the problem of estimation by angular measurements,” Avtom. Telemekh., No. 2, 65–74 (1997).

  8. E. A. Kirsanov and A. N. Fomin, “Algorithms of calculation of coordinates of source of radio emission in goniometric and measuring differences distances systems with the minimum number of mobile carriers with error check of definition of site of places of acceptance,” Radiotekhnika, No. 7, 47–51 (2013).

    Google Scholar 

  9. L. E. Shirokov, “Complex hypothesis tracking of moving objects,” J. Comput. Syst. Sci. Int. 39, 975 (2000).

    Google Scholar 

  10. Yu. P. Mel’nikov and S. V. Popov, Radio Intelligence. Methods for Evaluating the Effectiveness of the Positioning of Radiation Sources (Radiotekhnika, Moscow, 2008) [in Russian].

    Google Scholar 

  11. V. A. Ufaev, V. I. Afanas’ev, and S. N. Razin’kov, “Evaluation of the coordinates of the radio emission source based on measurements of the amplitude of the electromagnetic field,” Radiotekhnika, No. 10, 71–73 (2003).

    Google Scholar 

  12. A. G. Okhrimenko, “Solutions to the problem of identifying bearings in passive multi-position goniometric systems,” Izv. Vyssh. Uchebn. Zaved., Radioelektron., No. 6, 12–19 (2002).

  13. A. E. Kolessa, “Evaluation of the coordinates of a set of objects observed by a multi-position system of direction finders,” Radiotekh. Elektron. 32, 2534–2540 (1987).

    Google Scholar 

  14. Radar Handbook, Ed. by M. I. Skolnik (McGraw-Hill, New York, 2008).

    Google Scholar 

  15. S. C. Singhal and L. E. Stansel, Opt. Eng. 19, 376 (1980).

    Article  Google Scholar 

  16. M. Wax, IEEE Trans. Aerospace Electron. Syst. 19, 658 (1983).

    Article  Google Scholar 

  17. Yu. G. Bulychev and A. P. Manin, Mathematical Aspects of Determining the Aircraft Motion (Mashinostroenie, Moscow, 2000) [in Russian].

    MATH  Google Scholar 

  18. Yu. G. Bulychev, V. V. Vasil’ev, R. V. Dzhugan, et al., in Information and Measurement Support for Full-Scale Tests of Complex Technical Systems, Ed. by A. P. Manin and V. V. Vasil’ev (Mashinostroenie-Polet, Moscow, 2016) [in Russian].

    Google Scholar 

  19. V. Yu. Bulychev, Yu. G. Bulychev, S. S. Ivakina, and I. G. Nasenkov, “Classification of passive location invariants and their use,” J. Comput. Syst. Sci. Int. 54, 905 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  20. Yu. G. Bulychev, I. G. Nasenkov, and S. S. Ivakina, “Passive-energy location and navigation method in stationary and non-stationary statements,” Radiotekhnika, No. 6, 107–115 (2015).

    Google Scholar 

  21. Yu. G. Bulychev and I. V. Burlai, “Direction finding under a priori uncertain conditions,” J. Comput. Syst. Sci. Int. 41, 716 (2002).

    Google Scholar 

  22. A. G. Radzievskii and A. A. Sirota, Information Support of Radioelectronic Systems in Conflict Situations (IPRZhR, Moscow, 2001) [in Russian].

  23. Yu. A. Smirnov, Radiotechnical Reconnaissance (Voenizdat, Moscow, 2001) [in Russian].

    Google Scholar 

  24. Yu. G. Bulychev, V. Yu. Bulychev, S. S. Ivakina, I. G. Nasenkov, P. I. Nikolas, and E. N. Chepel’, “Substantiation of methods for optimal estimation of target motion parameters in triangulation location systems,” J. Comput. Syst. Sci. Int. 54, 593 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu. G. Bulychev and V. A. Golovskoi, “Regularized processing of observations in angle-measuring systems under the a priori uncertainty conditions,” J. Commun. Technol. Electron. 55, 65 (2010).

    Article  Google Scholar 

  26. Yu. G. Bulychev, I. V. Burlai, A. P. Manin, and Ya. V. Kritskii, “The variational–selective method for estimating object coordinates in a theta-theta navigation system,” J. Comput. Syst. Sci. Int. 40, 663 (2001).

    MATH  Google Scholar 

  27. Yu. G. Bulychev, I. G. Nasenkov, and E. N. Chepel’, “Cluster variational-selective method of passive location for triangulation measuring systems,” J. Comput. Syst. Sci. Int. 57, 179 (2018).

    Article  MATH  Google Scholar 

  28. V. Aidala and S. Nardone, “Biased estimation properties of the pseudolinear tracking filter,” IEEE Trans. Aerospase Electron. Syst. 18, 432–441 (1982).

    Article  Google Scholar 

  29. K. Amelin and A. Miller, “An algorithm for refinement of the position of a light UAV on the basis of Kalman filtering of bearing measurements,” J. Commun. Technol. Electron. 59, 622–631 (2014).

    Article  Google Scholar 

  30. A. Miller, “Development of the motion control on the basis of Kalman filtering of bearing-only measurements,” Autom. Remote Control 76, 1018–1035 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Miller and B. Miller, “Stochastic control of light UAV at landing with the aid of bearing-only observations,” in Proceedings of the SPIE 8ht International Conference on Machine Vision (ICMV 2015), Proc. SPIE 9875, 987529-1–10 (2015).

    Google Scholar 

  32. S. Karpenko, I. Konovalenko, A. Miller, B. Miller, and D. Nikolaev, “UAV control on the basis of 3D landmark bearing-only observations,” Sensors 15, 29802–29820 (2015).

    Article  Google Scholar 

  33. S. Karpenko, I. Konovalenko, A. Miller, B. Miller, and D. Nikolaev, “Visual navigation of the UAVs on the basis of 3D natural landmarks,” in Proceedings of the SPIE 8ht International Conference on Machine Vision (ICMV 2015), Vol. 9875, pp. 1–10.

  34. V. I. Mudrov and V. P. Kushko, Measurement Processing Methods: Quasi-Likely Estimates (Radiosvyaz’, Moscow, 1983) [in Russian].

    Google Scholar 

  35. A. N. Zaidel’, Elementary Estimates of Measurement Errors (Nauka, Leningrad, 1967) [in Russian].

    Google Scholar 

  36. A. F. Fomin, O. N. Novoselov, and A. V. Plyushchev, Rejection of Abnormal Measurement Results (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  37. A. N. Tikhonov and M. V. Ufimtsev, Statistical Processing of Experimental Results (Mosk. Gos. Univ., Moscow, 1988) [in Russian].

    Google Scholar 

  38. F. L. Chernous’ko, Evaluation of the Phase State of Dynamic Systems. The Method of Ellipsoids (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  39. F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust Statistics: The Approach Based on Influence Functions (Wiley, New York, 1986).

    MATH  Google Scholar 

  40. I. A. Boguslavskii, Applied Filtering and Control Problems (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  41. Yu. S. Kan and A. I. Kibzun, Problems of Stochastic Programming with Probabilistic Criteria (Fizmatlit, Moscow, 2009) [in Russian].

    MATH  Google Scholar 

  42. Satellite Monitoring Systems. Analysis, Synthesis and Control, Ed. by V. V. Malyshev (Mosk. Aviats. Inst., Moscow, 2000) [in Russian].

    Google Scholar 

  43. I. D. Mandel’, Cluster Analysis (Finansy Statistika, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  44. W. T. Williams and G. N. Lance, “Hierarchical classificatory methods,” in Statistical Methods for Digital Computers, Ed. by K. Enslein, A. Ralston, and H. S. Wilf (Wiley, New York, 1960), Vol. 3.

    Google Scholar 

  45. G. N. Lance and W. T. Willams, “A general theory of classificatory sorting strategies. 1. Hierarchical systems,” Comput. J. 9, 373–380 (1967).

    Article  Google Scholar 

  46. B. F. Zhdanyuk, Fundamentals of Statistical Processing of Trajectory Measurements (Sov. Radio, Moscow, 1978) [in Russian].

    Google Scholar 

  47. I. N. Sinitsyn, Kalman and Pugachev Filters (Logos, Moscow, 2007) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Bulychev.

Additional information

Translated by A. Muravnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulychev, Y.G., Chepel, E.N. Multistructural Method of the Triangulation Estimation of the Motion Parameters of a Radiating Target under A Priori Indefiniteness Assumptions. J. Comput. Syst. Sci. Int. 58, 852–868 (2019). https://doi.org/10.1134/S106423071904004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106423071904004X

Navigation