Skip to main content
Log in

Direct Method for Forming the Optimal Open Loop Control of Aerial Vehicles

  • CONTROL SYSTEMS FOR TECHNOLOGICAL PROCESSES
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

A direct method for finding the optimal open loop control of an aircraft is proposed. It is based on the preliminary parameterization of controls with the subsequent parameter estimation using the numerical minimization of a given functional. Conditions for the application of this method and possible constraints are discussed. The efficiency of the method is confirmed by examples that use the results of simulation and flight data. The results are compared with the solutions obtained using the classical approach to finding the optimal control based on the solution of a two-point boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Methods of Classical and Modern Theory of Automatic Control, Ed. by K. A. Pupkov and N. D. Egupov (MGTU Baumana, Moscow, 2004) [in Russian].

    Google Scholar 

  2. A. V. Rao, “Survey of numerical methods for optimal control,” Adv. Astronaut. Sci. 135, 497–528 (2010).

    Google Scholar 

  3. B. A. Conway, “A survey of methods available for numerical optimization of continuous dynamic systems,” J. Optim. Theory Appl. 152, 271–306 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. D. Krut’ko, Inverse Problems of the Dynamics of Controlled Systems. Nonlinear Models (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  5. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes (Wiley Interscience, New York, 1962; Nauka, Moscow, 1983).

  6. M. S. Lapin and I. O. Mel’ts, “Using the direct method to optimize the control functions of a dynamic system and their limitations,” Tr. TsAGI, No. 1190, 20–39 (1970).

    Google Scholar 

  7. C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using nonlinear programming techniques,” J. Guidance, Control, Dyn. 10, 338–342 (1987).

    Article  MATH  Google Scholar 

  8. O. von Stryk and R. Bulirsch, “Direct and indirect methods for trajectory optimization,” Ann. Operat. Res., No. 37, 357–373 (1992).

  9. R. Bulirsh, E. Nerz, H. J. Pesh, and O. von Stryk, “Combining direct and indirect methods in optimal control: range maximization of a hang glider,” Int. Ser. Numer. Math. 111, 273–286 (1993).

    MathSciNet  MATH  Google Scholar 

  10. C. J. Goh and K. L. Teo, “Control parametrization: a unified approach to optimal control problems with general constraints,” Automatica 24, 3–18 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  11. D. G. Hull, “Conversion of optimal control problems into parameter optimization problems,” J. Guidance, Control, Dyn. 20, 57–60 (1997).

    Article  MATH  Google Scholar 

  12. A. P. Karpenko, Modern Algorithms of Search Engine Optimization (MGTU im. N. E. Baumana, Moscow, 2014) [in Russian].

  13. L. Davis, Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York, 1991).

    Google Scholar 

  14. A. Wuerl, T. Crain, and E. Braden, “Genetic algorithm and calculus of variation-based trajectory optimization technique,” J. Spacecr. Rockets 40, 882–888 (2003).

    Article  Google Scholar 

  15. T. H. Won, G. H. Hwang, J. H. Park, and M. H. Lee, “Design of FLC for high-angle-of-attack using adaptive evolutionary algorithm,” KSME Int. J. 12, 187–196 (2003).

    Article  Google Scholar 

  16. A. I. Diveev and E. Yu. Shmal’ko, “Genetic programming methods for optimal control system synthesis,” Vopr. Teorii Bezopasn. Ustoich. Sistem, No. 17, 38–63 (2015).

    Google Scholar 

  17. A. I. Diveev, E. A. Sofronova, and E. Yu. Shmal’ko, “Evolutionary numerical solution methods of problem of control system synthesis for a group of robots,” Inform. Mat. Tekhnol. Nauke Upravl., No. 3, 11–23 (2016).

  18. L. S. Pontryagin, Ordinary Differential Equations, 4th ed. (Nauka, Moscow, 1974; Elsevier, Amsterdam, 1962).

  19. F. L. Chernous’ko, I. M. Anan’evskii, and S. A. Reshmin, Control Methods for Nonlinear Mechanical Systems (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  20. S. M. Roberts and J. S. Shipman, “Multipoint solution of two-point boundary value problems,” J. Optimiz. Theory Appl. 7, 301–318 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Miele, K. P. Well, and J. L. Tietze, “Multipoint approach to the two-point boundary value problem,” J. Math. Anal. Appl. 44, 625–642 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. A. Levin, “Comparison of solutions to the trajectory optimization problem of a guided rocket with a solid fuel rocket engine by direct and indirect method,” Uch. zap. TsAGI 48 (6), 53–63 (2017).

    Google Scholar 

  23. N. N. Moiseev, Numerical Methods in the Theory of Optimal Systems (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  24. Yu. S. Zav’yalov, B. I. Kvasov, and V. L. Miroshnichenko, Spline Function Methods (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  25. R. C. Eberhardt and J. A. Kennedy, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, 1995, pp. 1942–1948.

  26. A. E. Olsson, Particle Swarm Optimization: Theory, Techniques and Applications (Nova Science, Hauppage, USA, 2011).

    Google Scholar 

  27. Y. Lu, D. Yan, and D. Levy, “Parameter estimation of vertical takeoff and landing aircrafts by using a PID controlling particle swarm optimization algorithm,” Appl. Intelligence 44, 793–815 (2016).

    Article  Google Scholar 

  28. G. A. Bukovskii, O. N. Korsun, and A. V. Stulovskii, “Optimal control design for aircraft at overcritical angles of attack using population-based optimization algorithm,” Vestn. Komp’yut. Inform. Tekhnol., No. 6, 27–37 (2018).

  29. Aerodynamics, Stability and Controllability of Supersonic Aircraft, Ed. by G. S. Buschgens (Nauka, Moscow, 1998) [in Russian].

    Google Scholar 

  30. GOST (State Standard) No. 20058-80, The Dynamics of Aircraft in the Atmosphere. Terms, Definitions and Designations (1981).

  31. A. V. Kanyshev, O. N. Korsun, V. N. Ovcharenko, and A. V. Stulovskii, “Identification of aerodynamic coefficients of longitudinal movement and error estimates for onboard measurements of supercritical angles of attack,” J. Comput. Syst. Sci. Int. 57, 374 (2018).

    Article  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 18-08-00921-а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Korsun.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korsun, O.N., Stulovskii, A.V. Direct Method for Forming the Optimal Open Loop Control of Aerial Vehicles. J. Comput. Syst. Sci. Int. 58, 229–243 (2019). https://doi.org/10.1134/S1064230719020114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230719020114

Navigation