Skip to main content
Log in

Test-Based Diagnosis of Faults in Data Exchange Addressing in Computer Systems Using Parallel Model

  • Computer Methods
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

Test-based diagnosis of an arbitrary real-time computer system represented by a set of functionally related software modules executed on a single computer or concurrently on a set of computers is considered. The approach called diagnosis using a parallel model is used. An efficient procedure for test generation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Patton, P. M. Frank, and R. N. Clark, Issues in Fault Diagnosis for Dynamic Systems (Springer, London, 2000).

    Book  Google Scholar 

  2. R. Isermann, Fault Diagnosis Application (Springer, Heidelberg, 2011).

    Book  MATH  Google Scholar 

  3. L. A. Mironovskii, Functional Diagnosis of Dynamical Systems (MGU-GRIF, Moscow, St. Petersburg, 1998) [in Russian].

    Google Scholar 

  4. N. V. Kolesov, M. V. Tolmacheva, and P. V. Yukhta, Real Time Systems. Planning, Analysis, Diagnosis (Elektropribor, St. Petersburg, 2014) [in Russian].

    MATH  Google Scholar 

  5. E. Chanthery and Y. Pencolé, “Monitoring and active diagnosis for discrete-event systems,” in Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (Barcelona, Spain, 2009), pp. 1545–1550.

    Google Scholar 

  6. H. Niemann, “Fault tolerant control based on active fault diagnosis,” in Proceedings of the American Control Conference (Portland, OR, USA, 2005), pp. 2224–2229.

    Google Scholar 

  7. L. A. Mironovskii and V. A. Slaev, “Optimal test signals as a solution of the generalized Bulgakov problem,” Autom. Remote Control 63, 568–577 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. G.-V. Jourdan and G. V. Bochmann, “On testing 1-safe Petri nets,” in Proceedings of the 3rd IEEE International Symposium on Theoretical Aspects of Software Engineering (Tianjin, China, 2009), pp. 275–281.

    Google Scholar 

  9. M. Pocci, I. Demongodin, N. Giambiasi, and A. Giua, “Testing discrete event systems: synchronizing sequences using Petri nets,” in Proceedings of the European Modeling and Simulation Symposium EMSS10 (Fes, Morocco, 2010).

    Google Scholar 

  10. M. Pocci, I. Demongodin, N. Giambiasi, and A. Giua, “Testing experiments on synchronized Petri nets,” IEEE Trans. Autom. Sci. Eng. 11, 125–138 (2014).

    Article  MATH  Google Scholar 

  11. C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, 2nd ed. (Springer, New York, 2007).

    MATH  Google Scholar 

  12. R. Debouk, S. Lafortune, and D. Teneketzis, “Coordinated decentralized protocols for failure diagnosis of discrete-event systems,” Discrete Event Dyn. Syst.: Theory Appl., No. 10, 33–79 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Dotoli, M. P. Fanti, and A. M. Mangini, “Fault detection of discrete event systems using petri nets and integer linear programming,” in Proceedings of the 17th IFAC World Congress (Seoul, Korea, 2008).

    Google Scholar 

  14. E. Garcia, A. Correcher, F. Morant, E. Quiles, and R. Blasco, “Modular fault diagnosis based on discrete event systems,” Discrete Event Dyn. Syst., No. 15, 237–256 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Genc and S. Lafortune, “Distributed diagnosis of place-bordered Petri nets,” IEEE Trans. Autom. Sci. Eng., No. 4, 206–219 (2007).

    Article  Google Scholar 

  16. S. Lai, D. Nessi, M. P. Cabasino, A. Giua, and C. Seatzu, “A comparison between two diagnostic tools based on automata and Petri nets,” in Proceedings of the 9th Workshop on Discrete Event Systems WODES’08, Göteborg, Sweden, 2008, pp. 144–149.

  17. J. Zaytoon and S. Lafortune, “Overview of fault diagnosis methods for discrete event systems,” Ann. Rev. Control 37, 308–320 (2013).

    Article  Google Scholar 

  18. A. M. Gruzlikov, N. V. Kolesov, Yu. M. Skorodumov, and M. V. Tolmacheva, “Time variant dynamic models in diagnosing of real-time computer systems,” J. Comput. Syst. Sci. Int. 53, 867 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. M. Gruzlikov, N. V. Kolesov, and M. V. Tolmacheva, “Event monitoring of parallel computations,” Int. J. Appl. Math. Comput. Sci. 25, 311–321 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. M. Gruzlikov and N. V. Kolesov, “Discrete-event diagnostic model for a distributed computational system. Independent chains,” Autom. Remote Control 77, 1805 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. M. Gruzlikov and N. V. Kolesov, “Discrete-event diagnostic model for a distributed computational system. Merging chains,” Autom. Remote Control 78, 682 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Colaneri and S. Longhi, “The realization problem for linear periodic systems,” Automatica 31, 775–779 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Varga, “Periodic Lyapunov equations: some applications and new algorithms,” Int. J. Control 67, 69–87 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Gill, Linear Sequential Circuits (McGraw-Hill, New York, 1966).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kolesov.

Additional information

Original Russian Text © A.M. Gruzlikov, N.V. Kolesov, E.V. Lukoyanov, 2018, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2018, No. 3, pp. 76–89.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruzlikov, A.M., Kolesov, N.V. & Lukoyanov, E.V. Test-Based Diagnosis of Faults in Data Exchange Addressing in Computer Systems Using Parallel Model. J. Comput. Syst. Sci. Int. 57, 420–433 (2018). https://doi.org/10.1134/S1064230718030024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230718030024

Navigation