Skip to main content
Log in

Supraglacial Soils and Soil-Like Bodies: Diversity, Genesis, Functioning (Review)

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In the 21st century, glaciers are perceived as a distinct biome that has taken on special significance in today’s world of retreating ice. In this paper, we review the results of recent studies of organomineral formations on glaciers, their diversity, genesis, functioning, and the role in the biosphere. The question is raised about the possibility of involving supraglacial organomineral formations in the range of objects of soil science. We review the supraglacial zone as an area of soils and soil-like bodies, the biogeochemical processes in which affect the glacial biome and the surrounding landscapes. Interpretation of supraglacial organomineral formations from a pedological point of view allows us to identify several typical soil processes: accumulation and stabilization of organic matter (OM), its heterotrophic transformation, formation of dark-colored humified OM, accumulation of residual solid-phase products of functioning in situ, fine earth aggregation, and biochemical weathering. Among supraglacial formations, we distinguish pre-soils and soil-like bodies in ice and snow, metastable soil-like bodies on cryoconite, and soils with microprofiles under moss communities on ice, as well as relatively stable soils with macroprofiles on silicate gravelly to fine-earth deposits underlain by moving glacier and dead glacier ice. Labile dissolved OM accumulated and transformed in supraglacial soils and soil-like bodies has a significant impact on the periglacial zone, leading to the reservoir and priming effects. The studies of supraglacial organomineral systems are of fundamental importance for understanding the evolution of ecosystems on Earth, as well as for modeling supraglacial formations of extraterrestrial bodies with a vast cryosphere. Supraglacial soil formation is also a model object for studying common soils under conditions of a continuous external input of organic and mineral components, the contribution of which beyond the glaciers is no less significant, but is masked by the polymineral substrate of soils and parent rocks themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. E. V. Abakumov and R. Kh. Tembotov, “The influence of light-absorbing particles on the deglaciation of glaciers in polar and mountainous territories,” Samar. Luka: Probl. Reg. Glocal. Ekol. 29 (2), 5–11 (2020).

    Google Scholar 

  2. E. V. Abakumov and R. Kh. Tembotov, “Biochemical properties of cryoconites from glaciers of the Central Caucasus,” Samar. Luka: Probl. Reg. Glocal. Ekol. 30 (3), 38–46 (2021).

    Google Scholar 

  3. E. V. Abakumov, M. Zhiyanski, S. N. Chigrai, and V. I. Polyakov, “The role of birds in the formation of organomineral cryoconites on the glaciers of the Subantarctic,” Russ. Ornitol. Zh., No. 29(1957), 3540–3544 (2020).

  4. O. A. Belkina and B. R. Mavlyudov, “Mosses on the glaciers of Spitsbergen,” Bot. Zh., No. 96(5), 582–596 (2011).

  5. A. A. Galanin, “Rock glaciers are a special type of modern mountain glaciation in northeast Asia,” Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, No. 5, 59–70 (2005).

    Google Scholar 

  6. M. A. Glazovskaya, “Aeolian fine-earth accumulations on glaciers of the Terskey Ala-Tau ridge,” Tr. Inst. Geogr. Akad. Nauk SSSR 49, 55–69 (1952).

    Google Scholar 

  7. M. A. Glazovskaya, “Aeolian deposits on the Tien Shan glaciers,” Priroda, No. 2, 90–92 (1954).

    Google Scholar 

  8. M. A. Glazovskaya, “Subaerial cover silty loams and soils in the highlands of the Inner Tien Shan,” in Diverse Geography. Development of Ideas of Innokentii Petrovich Gerasimov (to the 100th Anniversary of the Birth) (2005), pp. 132–163.

  9. A. N. Gennadiev, “Study of soil formation using the chronosequence method (using the example of soils in the Elbrus region),” Pochvovedenie, No. 12, 33–43 (1978).

    Google Scholar 

  10. A. Gorbunov and I. Gorbunova, Geography of Rock Glaciers Around the World (Tovarishchestvo Nauchnykh Izdanii KMK, Moscow, 2010) [in Russian].

    Google Scholar 

  11. S. V. Goryachkin, N. S. Mergelov, and V. O. Targulian, “Extreme pedology: elements of theory and methodological approaches,” Eurasian Soil Sci. 52 (1), 1–13 (2019).

    Article  Google Scholar 

  12. S. V. Goryachkin, “Geography of extreme soils and soil-like systems,” Herald Russ. Acad. Sci. 92 (3), 335–341 (2022).

    Article  Google Scholar 

  13. E. P. Zazovskaya, N. S. Mergelov, V. A. Shishkov, A. V. Dolgikh, A. S. Dobryansky, M. P. Lebedeva, S. M. Turchinskaya, and S. V. Goryachkin, “Cryoconites as factors of soil development in conditions of rapid retreat of the Aldegonda glacier, Western Svalbard,” Eurasian Soil Sci. 55 (3), 299–312 (2022). https://doi.org/10.1134/S1064229322030152

    Article  Google Scholar 

  14. D. V. Karelin, S. S. Kutuzov, S. V. Goryachkin, E. P. Zazovskaya, and V. M. Kotlyakov, “Russian mountain glaciers in a “thawing” world: the first estimates of the balance of greenhouse gases in the Caucasus and Altai,” Dokl. Earth Sci. 504 (1), 321–325 (2022).

    Article  Google Scholar 

  15. Classification and Diagnostics of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  16. V. M. Kotlyakov, O. V. Rototaeva, G. A. Nosenko, L. V. Desinov, N. I. Osokin, and R. A. Chernov, Karmadon Catastrophe: What Happened and What to Expect Next (Izdatel’skii Dom “Kodeks”, Moscow, 2014) [in Russian].

  17. B. R. Mavlyudov, Glacier Drainage Systems (Izd. Inst. Geogr. Ross. Akad. Nauk, Moscow, 2006) [in Russian].

    Google Scholar 

  18. S. Z. Mindlin and M. A. Petrova, “On the origin and distribution of antibiotic resistance: permafrost bacteria studies,” Mol. Genet., Microbiol. Virol. 32 (4), 169–179 (2017).

    Article  Google Scholar 

  19. M. Yu. Moskalevskii, “On the role of the cryogenic factor in the formation of bottom-moraine deposits (under conditions of cover glaciation of Severnaya Zemlya),” Probl. Kriolitol. 8, 178–183 (1978).

    Google Scholar 

  20. D. A. Nikitin, L. V. Lysak, D. V. Badmadashiev, S. S. Kholod, N. S. Mergelov, A. V. Dolgikh, and S. V. Goryachkin, “Biological activity of soils in the north of the Novaya Zemlya Archipelago: effect of the largest glacial sheet in Russia,” Eurasian Soil Sci. 54 (10), 1496–1516 (2021). https://doi.org/10.1134/S1064229321100082

    Article  Google Scholar 

  21. G. A. Nosenko, S. A. Nikitin, and T. E. Khromova, “Changes in the area and volume of glaciers in the Altai Mountains (Russia) since the middle of 20th century according to satellite data,” Led Sneg, No. 54 (2), 5–13 (2015).

    Google Scholar 

  22. V. O. Targul’yan, Theory of Pedogenesis and Evolution of Soils (Izd. GEOS, Moscow, 2019) [in Russian].

    Google Scholar 

  23. V. O. Targul’yan, “Elementary soil-forming processes,” Pochvovedenie, No. 12, 1413–1422 (2005).

    Google Scholar 

  24. A. B. Tashirev, A. A. Tashireva, and A. E. Berezkina, “The role of cryocenoses in the formation of soils on glaciers in West Antarctica,” Dopov. Nats. Akad. Nauk Ukr., No. 4, 155–161 (2012).

  25. A. E. Fersman, “Geochemistry and mineralogy of the polar regions,” Dokl. Akad. Nauk SSSR 19 (8), (1938).

  26. N. M. Chumakov, “Glaciations of the Earth: history, stratigraphic significance and role in the biosphere,” Tr. Geol. Inst., No. 611, 2015.

  27. V. A. Shishkov, E. P. Zazovskaya, M. P. Lebedeva, N. S. Mergelov, and A. V. Dolgikh, “Peculiarities of the microstructure of soils developed on cryoconites in extreme conditions of the retreat zone of the Aldegonda glacier (Western Spitsbergen),” in Morphology of Soils from Macro- to Submicrolevels (2016), pp. 359—363 [in Russian].

  28. E. Abakumov, T. Nizamutdinov, and V. Polyakov, “Analysis of the polydispersity of soil-like bodies in glacier environments by the laser light scattering (diffraction) method,” Biol. Commun. 66 (3), 198–209 (2021). https://doi.org/10.21638/spbu03.2021.302

    Article  Google Scholar 

  29. E. Abakumov, R. Tembotov, I. Kushnov, and V. Polyakov, “Micromorphology of cryoconite on Garabashi and Skhelda glaciers and soils of Baksan Gorge, Mt. Elbrus, Central Caucasus,” Pol. Polar Res. 43 (1), 1–20 (2021). https://doi.org/10.24425/ppr.2021.138590

    Article  Google Scholar 

  30. E. Abakumov, I. Kushnov, T. Nizamutdinov, and R. Tembotov, “Cryoconites as biogeochemical markers of anthropogenic impact in high mountain regions: analysis of polyaromatic pollutants in soil-like bodies,” One Ecosystem 7, 1–26 (2022). https://doi.org/10.3897/oneeco.7.e78028

    Article  Google Scholar 

  31. E. Abakumov, A. Gangapshev, A. Gezhaev, and R. Tembotov, “Radionuclide activity in cryoconite from glaciers of the Central Caucasus, Russia,” Solid Earth Sci. 7 (4), 268–275 (2022). https://doi.org/10.1016/j.sesci.2022.08.001

    Article  Google Scholar 

  32. D. S. Abbot and R. T. Pierrehumbert, “Mudball: surface dust and snowball Earth deglaciation,” J. Geophys. Res.: Atmos. 115 (D3), 1–11 (2010). https://doi.org/10.1029/2009JD012007

    Article  Google Scholar 

  33. A. S. Abouhend, K. Milferstedt, J. Hamelin, A. A. Ansari, C. Butler, B. I. Carbajal-Gonzalez, and C. Park, “Growth progression of oxygenic photogranules and its impact on bioactivity for aeration-free wastewater treatment,” Environ. Sci. Technol. 54 (1), 486–496 (2019). https://doi.org/10.1021/acs.est.9b04745

    Article  Google Scholar 

  34. R. Ambrosini, R. S. Azzoni, F. Pittino, G. Diolaiuti, A. Franzetti, and M. Parolini, “First evidence of microplastic contamination in the supraglacial debris of an alpine glacier,” Environ. Pollut. 253, 297–301 (2019). https://doi.org/10.1016/j.envpol.2019.07.005

    Article  Google Scholar 

  35. L. C. Andrew, “Greenland’s subglacial methane released,” Nature 565 (7737), 31–32 (2019). https://doi.org/10.1038%2Fd41586-018-07762-7

    Article  Google Scholar 

  36. A. M. Anesio, A. J. Hodson, A. Fritz, R. Psenner, and B. Sattler, “High microbial activity on glaciers: importance to the global carbon cycle,” Global Change Biol. 15 (4), 955–960 (2009). https://doi.org/10.1111/j.1365-2486.2008.01758.x

    Article  Google Scholar 

  37. A. M. Anesio and J. Laybourn-Parry, “Glaciers and ice sheets as a biome,” Trends Ecol Evol. 27 (4), 219–225 (2012). https://doi.org/10.1016/j.tree.2011.09.012

    Article  Google Scholar 

  38. A. M. Anesio, B. Mindl, J. Laybourn-Parry, A. J. Hodson, and B. Sattler, “Viral dynamics in cryoconite on a high Arctic glacier (Svalbard),” J. Geophys. Res. 112 (G4), 1–10 (2007). https://doi.org/10.1029/2006JG000350

    Article  Google Scholar 

  39. R. Antony, A. M. Grannas, A. S. Willoughby, R. L. Sleighter, M. Thamban, and P. G. Hatcher, “Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet,” Environ. Sci. Technol. 48 (11), 6151–6159 (2014). https://doi.org/10.1021/es405246a

    Article  Google Scholar 

  40. R. Antony, A. S. Willoughby, A. M. Grannas, V. Catanzano, R. L. Sleighter, M. Thamban, P. G. Hatcher, and S. Nair, “Molecular insights on dissolved organic matter transformation by supraglacial microbial communities,” Environ. Sci. Technol. 51 (8), 4328–4337 (2017). https://doi.org/10.1021/acs.est.6b05780

    Article  Google Scholar 

  41. G. Baccolo, B. Di Mauro, D. Massabo, M. Clemenza, M. Nastasi, B. Delmonte, M. Prata, P. Prati, E. Previtali, and V. Maggi, “Cryoconite as a temporary sink for anthropogenic species stored in glaciers,” Sci. Rep. 7 (1), 1–11 (2017). https://doi.org/10.1038/s41598-017-10220-5

    Article  Google Scholar 

  42. G. Baccolo, E. Łokas, P. Gaca, D. Massabò, R. Ambrosini, R. S. Azzoni, C. Clason, B. Di Mauro, A. Franzetti, M. Nastasi, M. Prata, P. Prati, E. Previtali, B. Delmonte, V. Maggi, “Cryoconite: an efficient accumulator of radioactive fallout in glacial environments,” The Cryosphere 14 (2), 657–672 (2020). https://doi.org/10.5194/tc-14-657-2020

    Article  Google Scholar 

  43. E. A. Bagshaw, M. Tranter, A. G. Fountain, K. A. Welch, H. Basagic, and W. B. Lyons, “Biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica,” J. Geophys. Res. 112 (G4), 1–8 (2007). https://doi.org/10.1029/2007JG000442

    Article  Google Scholar 

  44. E. A. Bagshaw, M. Tranter, A. G. Fountain, K. Welch, H. J. Basagic, and W. B. Lyons, “Do cryoconite holes have the potential to be significant sources of C, N and P to downstream depauperate ecosystems of Taylor Valley, Antarctica?,” Arct., Antarct. Alp. Res. 45 (4), 1–15 (2013). https://doi.org/10.1657/1938-4246-45.4.440

    Article  Google Scholar 

  45. E. A. Bagshaw, M. Tranter, J. L. Wadham, A. G. Fountain, A. Dubnick, and S. Fitzsimons, “Processes controlling carbon cycling in Antarctic glacier surface ecosystems,” Geochem. Perspect. Lett. 2 (1), 44–54 (2016). https://doi.org/10.7185/geochemlet.1605

    Article  Google Scholar 

  46. M. R. Balks, J. López-Martínez, S. Goryachkin, N. S. Mergelov, C. E. G. R. Schaefer, F. N. B. Simas, P. C. Almond, G. G. C. Claridge, M. McLeod, and J. Scarrow, “Windows on Antarctic Soil-Landscape relations across selected regions of Antarctica,” Geol. Soc. London Spec. Publ. 381 (1), 397–410 (2013). https://doi.org/10.1144/SP381.9

    Article  Google Scholar 

  47. R. D. Bardgett, A. Richter, R. Bol, M. H. Garnett, R. Bäumler, X. Xu, E. Lopez-Capel, D. Manning, P. Hobbs, I. Hartley, and W. Wanek, “Heterotrophic microbial communities use ancient carbon following glacial retreat,” Biol. Lett. 3 (5), 487–490 (2007). https://doi.org/10.1098%2Frsbl.2007.0242

    Article  Google Scholar 

  48. O. A. Belkina and A. A. Vilnet, “Some aspects of the moss population development on the Svalbard glaciers,” Czech Polar Rep. 5 (2), 160–175 (2015). https://doi.org/10.5817/CPR2015-2-14

    Article  Google Scholar 

  49. C. M. Bellas, A. M. Anesio, J. Telling, et al., “Viral impacts on bacterial communities in Arctic cryoconite,” Environ. Res. Lett. 8, 045021 (2013).

    Article  Google Scholar 

  50. D. I. Benn, G. Le Hir, H. Bao, Y. Donnadieu, C. Dumas, E. J. Fleming, et al., “Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation,” Nat. Geosci. 8 (9), 704–707 (2015).

    Article  Google Scholar 

  51. H. Beraldi-Campesi, “Early life on land and the first terrestrial ecosystems,” Ecol. Process. 2 (1), 1–17 (2013). https://doi.org/10.1186/2192-1709-2-1

    Article  Google Scholar 

  52. C. E. Blank and P. Sanchez-Baracaldo, “Timing of morphological and ecological innovations in the cyanobacteria–a key to understanding the rise in atmospheric oxygen,” Geobiology 8 (1), 1–23 (2010). https://doi.org/10.1111/j.1472-4669.2009.00220.x

    Article  Google Scholar 

  53. T. Bond, S. Doherty, D. Fahey, P. Forster, T. Berntsen, B. J. DeAngelo, M. Flanner, S. Ghan, B. Kaercher, D. Koch, et al., “Bounding the role of black carbon in the climate system: A scientific assessment,” J. Geophys. Res. Atmos. 118, 5380–5552 (2013). https://doi.org/10.1002/jgrd.50171

    Article  Google Scholar 

  54. J. C. Bourgeois, K. Gajewski, and R. M. Koerner, “Spatial patterns of pollen deposition in arctic snow,” J. Geophys. Res. Atmos. 106 (D6), 5255–5265 (2001). https://doi.org/10.1029/2000JD900708

    Article  Google Scholar 

  55. J. Buda, E. Łokas, M. Pietryka, D. Richter, W. Magowski, N. S. Iakovenko, D. L. Porazinska, T. Budzik, M. Grabiec, J. Grzesiak, P. Klimaszyk, P. Gaca, and K. Zawierucha, “Biotope and biocenosis of cryoconite hole ecosystems on Ecology Glacier in the maritime Antarctic,” Sci. Total Environ. 724, 138112 (2020). https://doi.org/10.1016/j.scitotenv.2020.138112

    Article  Google Scholar 

  56. R. Burns, P. M. Wynn, P. Barker, N. McNamara, S. Oakley, N. Ostle, A. W. Stott, H. Tuffen, Z. Zhou, F. S. Tweed, A. Chesler, and M. Stuart, “Direct isotopic evidence of biogenic methane production and efflux from beneath a temperate glacier,” Sci. Rep. 8, 17118 (2018). https://doi.org/10.1038/s41598-018-35253-2

    Article  Google Scholar 

  57. N. J. Butterfield, “Early evolution of the Eukaryota,” Palaeontology 58 (1), 5–17 (2015). https://doi.org/10.1111/pala.12139

    Article  Google Scholar 

  58. K. A. Cameron, A. J. Hodson, and A. M. Osborn, “Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic,” FEMS Microbiol. Ecol. 82 (2), 254–267 (2012). https://doi.org/10.1111/j.1574-6941.2011.01277.x

    Article  Google Scholar 

  59. K. A. Casey, A. Kääb, and D. I. Benn, “Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal,” Cryosphere 6 (1), 85–100 (2012). https://doi.org/10.5194/tc-6-85-2012

    Article  Google Scholar 

  60. R. K. Chakrabarty, H. Moosmuller, L. W. Chen, K. Lewis, W. P. Arnott, C. Mazzoleni, M. K. Dubey, C. E. Wold, W. M. Hao, and S. M. Kreidenweis, “Brown carbon in tar balls from smoldering biomass combustion,” Atmos. Chem. Phys. 10 (13), 6363–6370 (2010). https://doi.org/10.5194/acp-10-6363-2010

    Article  Google Scholar 

  61. B. C. Christner, B. H. Kvitko, and J. N. Reeve, “Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole,” Extremophiles 7 (3), 177–183 (2003). https://doi.org/10.1007/s00792-002-0309-0

    Article  Google Scholar 

  62. P. A. Cohen and F. A. Macdonald, “The Proterozoic record of eukaryotes,” Paleobiology 41 (4), 610–632 (2015). https://doi.org/10.1017/pab.2015.25

    Article  Google Scholar 

  63. E. Collier, L. I. Nicholson, B. W. Brock, F. Maussion, R. Essery, and A. B. G. Bush, “Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach,” The Cryosphere 8 (4), 1429–1444 (2014). https://doi.org/10.5194/tc-8-1429-2014

    Article  Google Scholar 

  64. J. Cook, A. Edwards, N. Takeuchi, and T. Irvine-Fynn, “Cryoconite: the dark biological secret of the cryosphere,” Prog. Phys. Geogr. 40 (1), 66–111 (2016). https://doi.org/10.1177/0309133315616574

    Article  Google Scholar 

  65. J. M. Cook, A. J. Hodson, and T. D. Irvine-Fynn, “Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology,” Hydrol. Processes, (2016) (in press). https://doi.org/10.1002/hyp.10602

  66. S. J. Coulson and N. G. Midgley, “The role of glacier mice in the invertebrate colonisation of glacial surfaces: the moss balls of the Falljökull, Iceland,” Polar Biol. 35 (11), 1651–1658 (2012). https://doi.org/10.1007/s00300-012-1205-4

    Article  Google Scholar 

  67. J. D’Andrilli, C. M. Foreman, M. Sigl, J. C. Priscu, and J. R. McConnell, “A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core,” Clim. Past 13 (5), 533–544 (2017). https://doi.org/10.5194/cp-13-533-2017

    Article  Google Scholar 

  68. J. L. Darcy, E. Gendron, P. Sommers, D. L. Porazinska, and S. K. Schmidt, “Island biogeography of cryoconite hole bacteria in Antarctica’s Taylor Valley and around the world,” Front. Ecol. Evol. 6 (180), (2018). https://doi.org/10.3389/fevo.2018.00180

  69. J. B. Dawson, R. W. Hinton, and I. M. Steele, “The composition of anorthoclase and nepheline in Mount Kenya phonolite and Kilimanjaro trachyte, and crystal–glass partitioning of elements,” Can. Mineral. 46 (6), 1455–1464. (2008) https://doi.org/10.3749/canmin.46.6.1455

    Article  Google Scholar 

  70. G. C. A. de Menezes, B. A. Porto, J. C. Simões, C. A. Rosa, and L. H. Rosa, “Fungi in snow and glacial ice of Antarctica,” in Fungi of Antarctica: Diversity, Ecology and Biotechnological Applications (2019), pp. 127–146. https://doi.org/10.1007/978-3-030-18367-7_6

  71. G. C. A. de Menezes, S. S. Amorim, V. N. Gonçalves, V. M. Godinho, J. C. Simões, C. A. Rosa, and L. H. Rosa, “Diversity, distribution, and ecology of fungi in the seasonal snow of 918 Antarctica,” Microorganisms 7, 445–445 (2019). https://doi.org/10.3390/microorganisms7100445

    Article  Google Scholar 

  72. K. M. Deuerling, W. B. Lyons, S. A. Welch, and K. A. Welch, “The characterization and role of aeolian deposition on water quality, McMurdo Dry Valleys, Antarctica,” Aeolian Res. 13, 7–17 (2014). https://doi.org/10.1016/j.aeolia.2014.01.002

    Article  Google Scholar 

  73. B. Di Mauro, G. Baccolo, R. Garzonio, C. Giardino, D. Massabò, A. Piazzalunga, M. Rossini, and R. Colombo, “Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps),” Cryosphere 11, 2393–2409 (2017). https://doi.org/10.5194/tc-11-2393-2017

    Article  Google Scholar 

  74. B. Di Mauro, F. Fava, L. Ferrero, R. Garzonio, G. Baccolo, B. Delmonte, and R. Colombo, “Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations,” J. Geophys. Res. 120, 6080–6097 (2015). https://doi.org/10.1002/2015JD023287

    Article  Google Scholar 

  75. B. Di Mauro, R. Garzonio, M. Rossini, G. Filippa, P. Pogliotti, M. Galvagno, U. Morra di Cella, M. Migliavacca, G. Baccolo, M. Clemenza, B. Delmonte, Maggi, V. M. Dumont, F. Tuzet, M. Lafaysse, S. Morin, E. Cremonese, and R. Colombo, “Saharan dust events in the European Alps: Role in snowmelt and geochemical characterization,” Cryosphere 13, 1147–1165 (2019). https://doi.org/10.5194/tc-13-1147-2019

    Article  Google Scholar 

  76. A. Edwards, A. M. Anesio, and S. M. Rassner, B. Sattler, B. Hubbard, W. T. Perkins, and M. Young, “Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard,” ISME J. 51 (1), 150–160 (2011). https://doi.org/10.1038/ismej.2010.100

    Article  Google Scholar 

  77. A. Edwards, J. A. Pachebat, M. Swain, et al., “A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem,” Environ. Res. Lett. 8, 035003 (2013). https://doi.org/10.1088/1748-9326/8/3/035003

    Article  Google Scholar 

  78. M. B. Edwards, “Late Precambrian glacial loessites from north Norway and Svalbard,” J. Sediment. Res. 49 (1), 85–91 (1979). https://doi.org/10.1306/212F76C6-2B24-11D7-8648-00010-2C1865D

    Article  Google Scholar 

  79. D. A. Evans, “Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox,” Am. J. Sci. 300 (5), 347–433 (2000). https://doi.org/10.2475/ajs.300.5.347

    Article  Google Scholar 

  80. J. B. Fellman, E. Hood, P. A. Raymond, J. Hudson, M. Bozeman, and M. Arimitsu, “Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web,” Limnol. Oceanogr. 60 (4), 1118–1128 (2015). https://doi.org/10.1002/lno.10088

    Article  Google Scholar 

  81. C. Ferrario, F. Pittino, I. Tagliaferri, I. Gandolfi, G. Bestetti, R. S. Azzoni, G. Diolaiuti, A. Franzetti, R. Ambrosini, and S. Villa, “Bacteria contribute to pesticide degradation in cryoconite holes in an Alpine glacier,” Environ. Pollut. 230, 919–926 (2017). https://doi.org/10.1016/j.envpol.2017.07.039

    Article  Google Scholar 

  82. T. Fickert, D. Friend, F. Grüninger, B. Molnia, and M. Richter, “Did debris-covered glaciers serve as Pleistocene refugia for plants? A new hypothesis derived from observations of recent plant growth on glacier surfaces,” Arct., Antarct. Alp. Res. 39 (2), 245–257 (2007). https://doi.org/10.1657/1523-0430(2007)39[245:DDGSAP]2.0.CO;2

    Article  Google Scholar 

  83. T. Fickert, D. Friend, B. Molnia, F. Grüninger, and M. Richter, “Vegetation ecology of debris-covered glaciers (DCGs)–site conditions, vegetation patterns and implications for DCGs serving as quaternary cold-and warm-stage plant refugia,” Diversity 14 (2), 114 (2022). https://doi.org/10.3390/d14020114

    Article  Google Scholar 

  84. A. G. Fountain, M. Tranter, T. H. Nylen, K. J. Lewis, and D. R. Mueller, “Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica,” J. Glaciol. 50 (168), 323–335 (2004).

    Article  Google Scholar 

  85. A. G. Fountain, T. H. Nylen, M. Tranter, and E. Bagshaw, “Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Antarctica,” J. Geophys. Res. Biogeosci. 113 (G1), (2008). https://doi.org/10.1029/2007JG000430

  86. K. Goodwin, M. G. Loso, and M. Braun, “Glacial transport of human waste and survival of fecal bacteria on Mt. McKinley’s Kahiltna Glacier, Denali National Park, Alaska,” Arct., Antarct. Alp. Res. 44 (4), 432–445 (2012). https://doi.org/10.1657/1938-4246-44.4.432

    Article  Google Scholar 

  87. E. R. Graber and Y. Rudich, “Atmospheric HULIS: How humic-like are they? A comprehensive and critical review,” Atmos. Chem. Phys. 6 (3), 729–753 (2006). https://doi.org/10.5194/acp-6-729-2006

    Article  Google Scholar 

  88. L. E. Graham, M. E. Cook, L. W. Wilcox, J. Graham, W. Taylor, C. H. Wellman, and L. Lewis, “Resistance of filamentous chlorophycean, ulvophycean, and xanthophycean algae to acetolysis: testing Proterozoic and Paleozoic microfossil attributions,” Int. J. Plant Sci. 174 (6), 947–957 (2013). https://doi.org/10.1086/670591

    Article  Google Scholar 

  89. A. M. Grannas, W. C. Hockaday, P. G. Hatcher, L. G. Thompson, and E. Mosley-Thompson, “New revelations on the nature of organic matter in ice cores,” J. Geophys. Res. Atmos. 111 (D4), (2006). https://doi.org/10.1029/2005JD006251

  90. A. Gray, M. Krolikowski, P. Fretwell, P. Convey, L. S. Peck, M. Mendelova, A. G. Smith, and M. P. Davey, “Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink,” Nat. Commun. 11 (1), 2527 (2020). https://doi.org/10.1038/s41467-020-16018-w

    Article  Google Scholar 

  91. B. Guo, Y. Liu, K. Liu, Q. Shi, C. He, R. Cai, and N. Jiao, “Different dissolved organic matter composition between central and southern glaciers on the Tibetan Plateau,” Ecol. Indic. 139, 108888 (2022). https://doi.org/10.1016/j.ecolind.2022.108888

    Article  Google Scholar 

  92. O. L. Hadley and T. W. Kirchstetter, “Black-carbon reduction of snow albedo,” Nat. Clim. Change 2 (6), 437–440 (2012). https://doi.org/10.1038/nclimate1433

    Article  Google Scholar 

  93. S. Hågvar and M. Ohlson, “Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates,” Sci. Rep. 3 (1), 1–4 (2013). https://doi.org/10.1038/srep02820

    Article  Google Scholar 

  94. S. Hågvar, M. Ohlson, and J. E. Brittain, “A melting glacier feeds aquatic and terrestrial invertebrates with ancient carbon and supports early succession,” Arct., Antarct. Alp. Res. 48 (3), 551–562 (2016). https://doi.org/10.1657/AAAR0016-027

    Article  Google Scholar 

  95. R. R. Hansen, O. L. P. Hansen, J. J. Bowden, S. Normand, C. Bay, J. G. Sorensen, and T. T. Hoye, “High spatial variation in terrestrial arthropod species diversity and composition near the Greenland ice cap,” Polar Biol. 39, 2263–2272 (2016) https://doi.org/10.1007/s00300-016-1893-2

    Article  Google Scholar 

  96. C. J. Heusser, “Polsters of the moss Drepanocladus berggrenii on Gilkey Glacier, Alaska,” Bulletin of the Torrey Botanical Club (1972), pp. 34–36. https://doi.org/10.2307/2484240

  97. A. Hodson, “Understanding the dynamics of black carbon and associated contaminants in glacial systems,” Wiley Interdiscip. Rev.: Water 1 (2), 141–149 (2014).https://doi.org/10.1002/wat2.1016

  98. A. Hodson, A. M. Anesio, M. Tranter, M. Tranter, A. Fountain, M. Osborn, J. Priscu, J. Laybourn-Parry, and B. Sattler, “Glacial ecosystems,” Ecol. Monogr. 78 (1), 41–67 (2008). https://doi.org/10.1890/07-0187.1

    Article  Google Scholar 

  99. A. Hodson, K. Cameron, C. Bøggild, T. Irvine-Fynn, H. Langford, D. Pearce, and S. Banwar, “The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard,” J. Glaciol. 56 (196), 349–362 (2010). https://doi.org/10.3189/002214310791968403

    Article  Google Scholar 

  100. A. J. Hodson, A. M. Anesio, F. Ng, R. Watson, J. Quirk, T. Irvine-Fynn, A. Dye, C. Clark, P. McCloy, and J. Kohler, “A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across Arctic supraglacial ecosystem,” J. Geophys. Res. 112 (G4), G04S36 (2007). https://doi.org/10.1029/2007JG000452

    Article  Google Scholar 

  101. P. F. Hoffman, “Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes?,” Geobiology 14 (6), 531–542 (2016). https://doi.org/10.1111/gbi.12191

    Article  Google Scholar 

  102. P. F. Hoffman and Z. X. Li, “A palaeogeographic context for Neoproterozoic glaciation,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 277 (3–4), 158–172 (2009). https://doi.org/10.1016/j.palaeo.2009.03.013

  103. M. Homann, P. Sansjofre, M. Van Zuilen, C. Heubeck, J. Gong, B. Killingsworth, I. S. Foster, A. Airo, M. J. Van Kranendonk, and S. V. Lalonde, “Microbial life and biogeochemical cycling on land 3,220 million years ago,” Nat. Geosci. 11 (9), 665 (2018). https://doi.org/10.1038/s41561-018-0190-9

    Article  Google Scholar 

  104. E. Hood, T. J. Battin, J. Fellman, S. O’neel, and R. G. Spencer, “Storage and release of organic carbon from glaciers and ice sheets,” Nat. Geosci. 8 (2), 91–96 (2015). https://doi.org/10.1038/ngeo2331

    Article  Google Scholar 

  105. E. Hood, J. Fellman, R. G. Spencer, P. J. Hernes, R. Edwards, D. D' Amore, and D. Scott, “Glaciers as a source of ancient and labile organic matter to the marine environment,” Nature 462 (7276), 1044–1047 (2009). https://doi.org/10.1038/nature08580

    Article  Google Scholar 

  106. G. Horneck, “The microbial world and the case for Mars,” Planet. Space Sci. 48 (11), 1053–1063 (2000). https://doi.org/10.1016/S0032-0633(00)00079-9

    Article  Google Scholar 

  107. S. Hotaling, T. C. Bartholomaus, and S. L. Gilbert, “Rolling stones gather moss: movement and longevity of moss balls on an Alaskan glacier,” Polar Biol. 43, 735–744 (2020.). https://doi.org/10.1007/s00300-020-02675-6

  108. S. Hotaling, S. Lutz, R. J. Dial, A. M. Anesio, L. G. Benning, A. G. Fountain, J. L. Kelley, J. McCutcheon, S. S. McKenzie, and T. L. Hamilton, “Biological albedo reduction on ice sheets, glaciers, and snowfields,” Earth Sci. Rev. 220, 103728 (2021). https://doi.org/10.1016/j.earscirev.2021.103728

    Article  Google Scholar 

  109. S. Hotaling, D. H. Shain, S. A. Lang, R. K. Bagley, L. M. Tronstad, D. W. Weisrock, and J. L. Kelley, “Long-distance dispersal, ice sheet dynamics and mountaintop isolation underlie the genetic structure of glacier ice worms,” Proc. R. Soc. 286 (1905), 20190983 (2019).

  110. S. Hotaling, P. H. Wimberger, J. L. Kelley, and H. Watts, “Macroinvertebrates on glaciers: a key resource for terrestrial food webs?,” Ecology 101 (4), 1–3 (2020). https://doi.org/10.1002/ecy.2947

    Article  Google Scholar 

  111. J. Huang, S. Kang, M. Ma, J. Guo, Z. Cong, Z. Dong, R. Yin, J. Xu, L. Tripathee, K. Ram, and F. Wang, “Accumulation of atmospheric mercury in glacier cryoconite over Western China,” Environ. Sci. Technol. 53 (12), 6632–6639 (2019). https://doi.org/10.1021/acs.est.8b06575

    Article  Google Scholar 

  112. O. Humlum, B. Elberling, A. Hormes, K. Fjordheim, O. H. Hansen, and J. Heinemeier, “Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes,” The Holocene 15 (3), 396–407 (2005). https://doi.org/10.1191/0959683605hl817rp

    Article  Google Scholar 

  113. W. T. Hyde, T. J. Crowley, S. K. Baum, and W. R. Peltier, “Neoproterozoic ‘snowball Earth’simulations with a coupled climate/ice-sheet model,” Nature 405 (6785), 425–429 (2000). https://doi.org/10.1038/35013005

    Article  Google Scholar 

  114. T. D. L. Irvine-Fynn, A. Edwards, S. Newton, H. Langford, S. M. Rassner, J. Telling, A. M. Anesio, and A. J. Hodson, “Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry,” Environ. Microbiol. 14 (11), 2998–3012 (2012). https://doi.org/10.1111/j.1462-2920.2012.02876.x

    Article  Google Scholar 

  115. T. D. Irvine-Fynn and A. Edwards, “A frozen asset: the potential of flow cytometry in constraining the glacial biome,” Cytometry, Part A 85 (1), 3–7 (2014).

    Article  Google Scholar 

  116. T. D. Irvine-Fynn, J. W. Bridge, and A. J. Hodson, “In situ quantification of supraglacial cryoconite morphodynamics using time-lapse imaging: an example from Svalbard,” J. Glaciol. 57 (204), 651–657 (2011). https://doi.org/10.3189/002214311797409695

    Article  Google Scholar 

  117. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports (FAO, Rome, 2015), Vol. 106.

    Google Scholar 

  118. C. Kabala and J. Zarat, “Recent, relic and buried soils in the forefield of Werenskiold Glacier, SW Spitsbergen,” Pol. Polar Res. 30 (2), 161–178 (2009).

    Google Scholar 

  119. Ł. Kaczmarek, N. Jakubowska, S. Celewicz-Gołdyn, and K. Zawierucha, “The microorganisms of cryoconite holes (algae, Archaea, bacteria, cyanobacteria, fungi, and Protista): a review,” Polar Rec. 52 (2), 176–203 (2016). https://doi.org/10.1017/S0032247415000637

    Article  Google Scholar 

  120. K. Kastovska, J. Elster, M. Stibal, and H. Santruckova, “Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic),” Microb. Ecol. 50, 396–407 (2005). https://doi.org/10.1007/s00248-005-0246-4

    Article  Google Scholar 

  121. A. M. Kellerman, J. Vonk, S. McColaugh, D. C. Podgorski, E. van Winden, J. R. Hawkings, S. E. Johnston, M. Humayun, and R. G. Spencer, “Molecular signatures of glacial dissolved organic matter from Svalbard and Greenland,” Global Biogeochem. Cycles. 35 (3), e2020GB006709 (2021). https://doi.org/10.1029/2020GB006709

  122. A. L. Khan, H. M. Dierssen, T. A. Scambos, J. Hofer, and R. R. Cordero, “Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: Approaches to spectrally discriminate red and green communities and their impact on snowmelt,” Cryosphere 15, 133–148 (2021). https://doi.org/10.5194/tc-15-133-2021

    Article  Google Scholar 

  123. T. Khromova, G. Nosenko, S. Nikitin, A. Muraviev, V. Popova, L. Chernova, and V. Kidyaeva, “Changes in the mountain glaciers of continental Russia during the twentieth to twenty-first centuries,” Reg. Environ. Change 19, 1229–1247 (2019). https://doi.org/10.1007/s10113-018-1446-z

    Article  Google Scholar 

  124. J. L. Kirschvink, “Late Proterozoic low-latitude global glaciation,” in The Snowball Earth (1992), pp. 51–52.

  125. A. H. Knoll, “The early evolution of eukaryotes: a geological perspective,” Science 256 (5057), 622–627 (1992). https://doi.org/10.1126/science.1585174

    Article  Google Scholar 

  126. A. H. Knoll, “Paleobiological perspectives on early eukaryotic evolution,” Cold Spring Harbor Perspect. Biol. 6 (1), a016121 (2014). https://doi.org/10.1101/cshperspect.a016121

    Article  Google Scholar 

  127. I. Kushnov, E. Abakumov, R. Tembotov, and T. Nizamutdinov, “Migration of organic carbon and trace elements in the system glacier-soil in the Central Caucasus alpine environment,” J. Mt. Sci. 19 (12), 3458–3474 (2022). https://doi.org/10.1007/s11629-022-7589-x

    Article  Google Scholar 

  128. I. Kushnov, E. Abakumov, R. Tembotov, and V. Polyakov, “Geochemistry of cryoconite and soils in the Central Caucasus region and its environmental implications,” J. Mt. Sci. 18 (12), 3109–3124 (2021). https://doi.org/10.1007/s11629-021-6945-6

    Article  Google Scholar 

  129. S. Kutuzov, I. Lavrentiev, A. Smirnov, G. Nosenko, and D. Petrakov, “Volume changes of Elbrus glaciers from 1997 to 2017,” Front. Earth Sci. 153, (2019). https://doi.org/10.3389/feart.2019.00153

  130. S. Kutuzov, M. Legrand, S. Preunkert, P. Ginot, V. Mikhalenko, K. Shukurov, A. Poliukhov, and P. Toropov, “History of desert dust deposition recorded in the Elbrus ice core,” Atmos. Chem. Phys., 1–26 (2019). https://doi.org/10.5194/acp-2019-411

  131. S. Kutuzov, M. Shahgedanova, V. Krupskaya, and S. Goryachkin, “Optical, geochemical and mineralogical characteristics of light-absorbing impurities deposited on Djankuat glacier in the Caucasus Mountains,” Water 13, 2993 (2021). https://doi.org/10.3390/w13212993

    Article  Google Scholar 

  132. S. Kutuzov, M. Shahgedanova, V. Mikhalenko, P. Ginot, I. Lavrentiev, and S. Kemp, “High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records,” Cryosphere 7, 1481–1498 (2013). https://doi.org/10.5194/tc-7-1481-2013

    Article  Google Scholar 

  133. Y. Kuzyakov, “Priming effects: interactions between living and dead organic matter,” Soil Biol. Biochem. 42 (9), 1363–1371 (2010). https://doi.org/10.1016/j.soilbio.2010.04.003

    Article  Google Scholar 

  134. G. Lamarche-Gagnon, J. L. Wadham, B. S. Lollar, S. Arndt, P. Fietzek, A. D. Beaton, A. J. Tedstone, J. Telling, E. A. Bagshaw, J. R. Hawkings, T. J. Kohler, J. D. Zarsky, M. C. Mowlem, A. M. Anesio, G. M. Stibal, J. L. Lamarche-Gagnon, B. S. Wadham, Lollar et al., “Greenland melt drives continuous export of methane from the ice-sheet bed,” Nature 565, 73–77 (2019). https://doi.org/10.1038/s41586-018-0800-0

    Article  Google Scholar 

  135. H. Langford, A. Hodson, and S. Banwart, “Using FTIR spectroscopy to characterise the soil mineralogy and geochemistry of cryoconite from Aldegondabreen glacier, Svalbard,” Appl. Geochem. 26, S206–S209 (2011). https://doi.org/10.1016/j.apgeochem.2011.03.105

    Article  Google Scholar 

  136. H. Langford, A. Hodson, S. Banwart, and C. Bøggild, “The microstructure and biogeochemistry of Arctic cryoconite granules,” Ann. Glaciol. 51 (56), 87–94 (2010). https://doi.org/10.3189/172756411795932083

    Article  Google Scholar 

  137. H. J. Langford, T. D. L. Irvine-Fynn, A. Edwards, S. A. Banwart, and A. J. Hodson, “A spatial investigation of the environmental controls over cryoconite aggregation on Longyearbreen glacier, Svalbard,” Biogeosciences 11 (19), 5365–5380. https://doi.org/10.5194/bg-11-5365-2014

  138. M. Legrand, J. McConnell, H. Fischer, E. W. Wolff, S. Preunkert, M. Arienzo, N. Chellman, D. Leuenberger, O. Maselli, P. Place, M. Sigl, S. Schüpbach, and M. Flannigan, “Boreal fire records in Northern Hemisphere ice cores: a review,” Clim. Past. 12 (10), 2033–2059 (2016). https://doi.org/10.5194/cp-12-2033-2016

    Article  Google Scholar 

  139. Z. X. Li, D. A. D. Evans, and G. P. Halverson, “Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland,” Sediment. Geol. 294, 219–232 (2013). https://doi.org/10.1016/j.sedgeo.2013.05.016

    Article  Google Scholar 

  140. Q. Li, S. Kang, N. Wang, Y. Li, X. Li, Z. Dong, and P. Chen, “Composition and sources of polycyclic aromatic hydrocarbons in cryoconites of the Tibetan Plateau glaciers,” Sci. Total Environ. 574, 991–999 (2017). https://doi.org/10.1016/j.scitotenv.2016.09.159

    Article  Google Scholar 

  141. X. Li, Y. Ding, J. Xu, X. He, T. Han, S. Kang, Q. Wu, S. Mika, Z. Yu, and Q. Li, “Importance of mountain glaciers as a source of dissolved organic carbon,” J. Geophys. Res. Earth Surf. 123 (9), 2123–2134 (2018). https://doi.org/10.1029/2017JF004333

    Article  Google Scholar 

  142. Y. Li, S. Kang, J. Chen, Z. Hu, K. Wang, R. Paudyal, J. Liu, X. Wang, X. Qin, and M. Sillanpää, “Black carbon in a glacier and snow cover on the northeastern Tibetan Plateau: concentrations, radiative forcing and potential source from local topsoil,” Sci. Total Environ. 686, 1030–1038 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.469

    Article  Google Scholar 

  143. E. Łokas, A. Zaborska, M. Kolicka, M. Rózycki, and K. Zawierucha, “Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier,” Chemosphere 160, 162–172 (2016). https://doi.org/10.1016/j.chemosphere.2016.06.051

    Article  Google Scholar 

  144. E. Łokas, K. Zawierucha, A. Cwanek, K. Szufa, P. Gaca, J. W. Mietelski, and E. Tomankiewicz, “The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia),” Sci. Rep. 8 (1), 10802 (2018). https://doi.org/10.1038/s41598-018-29076-4

    Article  Google Scholar 

  145. S. Lutz, L. A. Ziolkowski, and L. G. Benning, “The biodiversity and geochemistry of cryoconite holes in Queen Maud Land, East Antarctica,” Microorganisms 7 (6), 1—16 (2019). https://doi.org/10.3390/microorganisms7060160

    Article  Google Scholar 

  146. S. Lutz, A. M. Anesio, A. Edwards, and L. G. Benning, “Linking microbial diversity and functionality of arctic glacial surface habitats,” Environ. Microbiol. 19 (2), 551–565 (2017). https://doi.org/10.1111/1462-2920.13494

    Article  Google Scholar 

  147. N. Makowska, K. Zawierucha, P. Nadobna, K. Piatek-Bajan, A. Krajewska, J. Szwedyk, and P. Iwasieczko, “Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers,” Sci. Total Environ. 716, 137022 (2020).

    Article  Google Scholar 

  148. N. Makowska-Zawierucha, J. Mokracka, M. Małecka, P. Balazy, M. Chełchowski, D. Ignatiuk, and K. Zawierucha, “Quantification of class 1 integrons and characterization of the associated gene cassettes in the high Arctic–Interplay of humans and glaciers in shaping the aquatic resistome,” Ecol. Indic. 145, 109633 (2022).

    Article  Google Scholar 

  149. R. Margesin and J. W. Fell, “Mrakiella cryoconite gen. nov., sp. Nov., a psychrophilic, anamorphoc, basidiomycetous yeast from alpine and arctic habitats,” Int. J. Syst. Evol. Microbiol. 58, 2977–2982 (2008). https://doi.org/10.1099/ijs.0.2008/000836-0

    Article  Google Scholar 

  150. D. O. McCrimmon, M. Bizimis, A. Holland, and L. A. Ziolkowski, “Supraglacial microbes use young carbon and not aged cryoconite carbon,” Org. Geochem. 118, 63–72 (2018). https://doi.org/10.1016/j.orggeochem.2017.12.002

    Article  Google Scholar 

  151. N. S. Mergelov, E. P. Zazovskaya, and S. V. Goryachkin, “Exploring principles of aggregation between organic and mineral phases on ice: insights from cryoconite granules of two mountain glaciers,” in Biogenic – Abiogenic Interactions in Natural and Anthropogenic Systems. 7th International Symposium (Skifia-print, St. Petersburg, 2022), pp. 17–18.

  152. T. Mieczan, M. Tarkowska-Kukuryk, D. Górniak, A. Światecki, M. Zdanowski, M. Adamczuk, “Vertical microzonation of ciliates in cryoconite holes in Ecology Glacier, King George Island,” Pol. Polar Res. 2, 201–212 (2013).

    Article  Google Scholar 

  153. A. Miroshnikov, M. Flint, E. Asadulin, R. Aliev, A. Shiryaev, A. Kudikov, V. Khvostikov, “Radioecological and geochemical peculiarities of cryoconite on Novaya Zemlya glaciers,” Sci. Rep. 11 (1), 1–15 (2021). https://doi.org/10.1038/s41598-021-02601-8

    Article  Google Scholar 

  154. V. Miteva, “Bacteria in snow and glacier ice,” in Psychrophiles: from Biodiversity to Biotechnology (Springer, Berlin, Heidelberg, 2008), pp. 31–50.

    Google Scholar 

  155. F. Müller and C. M. Keeler, “Errors in short-term ablation measurements on melting ice surfaces,” J. Glaciol. 8 (52), 91–105 (1969).

    Article  Google Scholar 

  156. T. Murakami, T. Segawa, D. Bodington, R. Dial, N. Takeuchi, S. Kohshima, and Y. Hongoh, “Census of bacterial microbiota associated with the glacier ice worm Mesenchytraeus solifugus,” FEMS Microbiol. Ecol. 91 (3), fiv003 (2015). https://doi.org/10.1093/femsec/fiv003

    Article  Google Scholar 

  157. M. Musilova, M. Tranter, J. Wadham, J. Telling, A. Tedstone, and A. M. Anesio, “Microbially driven export of labile organic carbon from the Greenland ice sheet,” Nat. Geosci. 10 (5), 360–365 (2017).

    Article  Google Scholar 

  158. K. Naegeli, A. Damm, M. Huss, H. Wulf, M. Schaepman, and M. Hoelzle, “Cross-comparison of albedo products for glacier surfaces derived from airborne and satellite (Sentinel-2 and Landsat 8) optical data,” Remote Sens. 9, 110 (2017). https://doi.org/10.3390/rs9020110

    Article  Google Scholar 

  159. K. Naegeli, M. Huss, and M. Hoelzle, “Change detection of bare-ice albedo in the Swiss Alps,” Cryosphere 13, 397–412 (2019). https://doi.org/10.5194/tc-13-397-2019

    Article  Google Scholar 

  160. N. Nagatsuka, N. Takeuchi, T. Nakano, E. Kokado, and Z. Li, “Sr, Nd and Pb stable isotopes of surface dust on Ürümqi glacier No. 1 in western China,” Ann. Glaciol. 51 (56), 95–105 (2010). https://doi.org/10.3189/172756411795931895

    Article  Google Scholar 

  161. F. Nansen, The Norwegian North Polar Expedition 1893–1896: Scientific Results (Longmans, Green and Co, London, 1906).

    Google Scholar 

  162. T. Nizamutdinov, B. Mavlyudov, V. Polyakov, and E. Abakumov, “Sediments from cryoconite holes and dirt cones on the surface of Svalbard glaciers: main chemical and physicochemical properties,” Acta Geochimica 42 (2), 346–359 (2023). https://doi.org/10.1007/s11631-022-00586-3

    Article  Google Scholar 

  163. A. E. Nordenskiöld, “Account of an expedition to Greenland in the year 1870,” Geol. Mag. 9 (98), 355–368 (1870).

    Article  Google Scholar 

  164. A. E. Nordenskiöld, “Cryoconite found 1870, July 19th–25th, on the inland ice, east of Auleitsivik Fjord, Disco Bay Greenland,” Geol. Mag., Decade 2 (2), 157–162 (1875).

    Google Scholar 

  165. A. J. Pain, J. B. Martin, E. E. Martin, Å. K. Rennermalm, and Shaily Rahman, “Heterogeneous CO2 and CH4 content of glacial meltwater from the Greenland Ice Sheet and implications for subglacial carbon processes,” The Cryosphere 15, 1627–1644 (2021). https://doi.org/10.5194/tc-15-1627-2021

    Article  Google Scholar 

  166. T. H. Painter, A. P. Barrett, C. C. Landry, J. Neff, M. P. Cassidy, C. Lawrence, K. E. McBride, and G. L. Farmer, “Impact of dis-turbed desert soils on duration of mountain snow cover,” Geophys. Res. Lett. 34, L12502 (2007). https://doi.org/10.1029/2007GL030284

    Article  Google Scholar 

  167. C. Park and N. Takeuchi, “Unmasking photogranulation in decreasing glacial albedo and net autotrophic wastewater treatment,” Environ. Microbiol. 23 (11), 6391–6404 (2021). https://doi.org/10.1111/1462-2920.15780

    Article  Google Scholar 

  168. B. G. Pautler, A. Dubnick, M. J. Sharp, A. J. Simpson, and M. J. Simpson, “Comparison of cryoconite organic matter composition from Arctic and Antarctic glaciers at the molecular-level,” Geochim. Cosmochim. Acta 104, 1–18 (2013). https://doi.org/10.1016/j.gca.2012.11.029

    Article  Google Scholar 

  169. L. Perini, C. Gostinčar, A. M. Anesio, C. Williamson, M. Tranter, and N. Gunde-Cimerman, “Darkening of the Greenland ice sheet: fungal abundance and diversity are associated 1246 with algal bloom,” Front. Microbiol. 10, 557 (2019). https://doi.org/10.3389/fmicb.2019.00557

    Article  Google Scholar 

  170. J. Pey, J. Revuelto, N. Moreno, E. Alonso-González, M. Bartolomé, J. Reyes, S. Gascoin, and J. I. López-Moreno, “Snow impurities in the central Pyrenees: from their geochemical and mineralogical composition towards their impacts on snow Albedo,” Atmosphere 11, 937 (2020). https://doi.org/10.3390/atmos11090937

    Article  Google Scholar 

  171. K. Pi, M. Bieroza, A. Brouchkov, W. Chen, L. J. Dufour, K. B. Gongalsky, … P. Van Cappellen, “The cold region critical zone in transition: Responses to climate warming and land use change,” Annu. Rev. Environ. Resour. 46, 111–134 (2021). https://doi.org/10.1146/annurev-environ-012220-125703

    Article  Google Scholar 

  172. F. Pittino, M. Maglio, I. Gandolfi, R. S. Azzoni, G. Diolaiuti, R. Ambrosini, and A. Franzetti, “Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability,” Ann. Glaciol. 59 (77), 1–9 (2018). https://doi.org/10.1017/aog.2018.16

    Article  Google Scholar 

  173. V. Polyakov, E. Abakumov, and B. Mavlyudov, “Black carbon as a source of trace elements and nutrients in ice sheet of King George Island, Antarctica,” Geosciences 10 (11), 465 (2020). https://doi.org/10.3390/geosciences10110465

    Article  Google Scholar 

  174. V. I. Polyakov, E. V. Abakumov, and R. Kh. Tembotov, “Black carbon as a factor in deglaciation in polar and mountain ecosystems: a review,” Bull. Tomsk State Univ. Biol. 52, 6–33 (2020).

  175. V. Polyakov, E. Zazovskaya, and E. Abakumov, “Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area, Spitsbergen,” Pol. Polar Res. 40 (2), 105–120 (2019). https://doi.org/10.24425/ppr.2019.128369

    Article  Google Scholar 

  176. E. A. Poniecka, E. A. Bagshaw, M. Tranter, H. Sass, C. J. Williamson, A. M. Anesio, and B. A. B. Team, “Rapid development of anoxic niches in supraglacial ecosystems,” Arct., Antarct. Alp. Res. 50 (1), S100015 (2018). https://doi.org/10.1080/15230430.2017.1420859

    Article  Google Scholar 

  177. P. R. Porter, A. J. Evans, A. J. Hodson, A. T. Lowe, and M. D. Crabtree, “Sediment–moss interactions on a temperate glacier: Falljökull, Iceland,” Ann. Glaciol. 48, 25–31 (2008). https://doi.org/10.3189/172756408784700734

    Article  Google Scholar 

  178. P. B. Price, “Microbial life in glacial ice and implications for a cold origin of life,” FEMS Microbiol. Ecol. 59 (2), 217–231 (2007). https://doi.org/10.1111/j.1574-6941.2006.00234.x

    Article  Google Scholar 

  179. L. Procházková, T. Leya, H. Křížková, and L. Nedbalová, “Sanguina nivaloides and Sanguina aurantia gen. et spp. nov.(Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow,” FEMS Microbiol. Ecol. 95 (6), fiz064 (2019). https://doi.org/10.1093/femsec/fiz064

    Article  Google Scholar 

  180. J. Rabassa, S. Rubulis, and J. Suarez, “Moraine in-transit as parent material for soil development and the growth of Valdivian rain forest on moving ice: Casa Pangue glacier, mount Tronador (lat. 41010'5), Chile,” Ann. Glaciol. 2, 97–102 (1981). https://doi.org/10.3189/172756481794352342

    Article  Google Scholar 

  181. P. A. Raymond, “The composition and transport of organic carbon in rainfall: Insights from the natural (13C and 14C) isotopes of carbon,” Geophys. Res. Lett. 32, L14402 (2005). https://doi.org/10.1029/2005GL022879

    Article  Google Scholar 

  182. D. Remias, U. Lütz-Meindl, and C. Lütz, “Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis,” Eur. J. Phycol. 40 (3), 259–268 (2005). https://doi.org/10.1080/09670260500202148

    Article  Google Scholar 

  183. D. Remias, S. Schwaiger, S. Aigner, T. Leya, H. Stuppner, and C. Lütz, “Characterization of an UV-and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in M esotaenium berggrenii (Z ygnematophyceae, Chlorophyta), an extremophyte living on glaciers,” FEMS Microbiol. Ecol. 79 (3), 638–648 (2012). https://doi.org/10.1111/j.1574-6941.2011.01245.x

    Article  Google Scholar 

  184. D. Remias, H. Wastian, C. Lütz, and T. Leya, “Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica,” Antarct. Sci. 25, 648–656 (2013). https://doi.org/10.1017/S0954102013000060

    Article  Google Scholar 

  185. Z. Ren, N. Martyniuk, I. A. Oleksy, A. Swain, and S. Hotaling, “Ecological stoichiometry of the mountain cryosphere,” Front. Ecol. Evol. 7, 360 (2019). https://doi.org/10.3389/fevo.2019.00360

    Article  Google Scholar 

  186. A. D. Rooney, J. V. Strauss, A. D. Brandon, and F. A. Macdonald, “A Cryogenian chronology: two long-lasting synchronous Neoproterozoic glaciations,” Geology 43 (5), 459–462 (2015). https://doi.org/10.1130/G36511.1

    Article  Google Scholar 

  187. P. Rozwalak, P. Podkowa, J. Buda, P. Niedzielski, S. Kawecki, R. Ambrosini, … K. Zawierucha, “Cryoconite–from minerals and organic matter to bioengineered sediments on glacier’s surfaces,” Sci. Total Environ. 807, 150874 (2022). https://doi.org/10.1016/j.scitotenv.2021.150874

    Article  Google Scholar 

  188. M. Rubino, A. D' Onofrio, O. Seki, and J. A. Bendle, “Ice-core records of biomass burning,” Anthr. Rev. 3 (2), 140–162 (2016). https://doi.org/10.1177/2053019615605117

    Article  Google Scholar 

  189. J. S. Ryu and A. D. Jacobson, “CO2 evasion from the Greenland Ice Sheet: a new carbon–climate feedback,” Chem. Geol. 320–321, 80–95 (2012). https://doi.org/10.1016/j.chemgeo.2012.05.024

    Article  Google Scholar 

  190. W. Sajjad, G. Din, M. Rafiq, A. Iqbal, S. Khan, S. Zada, B. Ali, and S. Kang S., “Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications,” Extremophiles 24, 447–473 (2020). https://doi.org/10.1007/s00792-020-01180-2

    Article  Google Scholar 

  191. G. Samui, R. Antony, and M. Thamban, “Chemical characteristics of hydrologically distinct cryoconite holes in coastal Antarctica,” Ann. Glaciol. 59 (77), 69–76 (2018). https://doi.org/10.1017/aog.2018.30

    Article  Google Scholar 

  192. G. Samui, R. Antony, and M. Thamban, “Fate of dissolved organic carbon in Antarctic Surface Environments during Summer,” J. Geophys. Res. Biogeosci. 125 (12), e2020JG005958 (2020).

  193. P. Sanborn, “Soil formation on supraglacial tephra deposits, Klutlan Glacier, Yukon Territory,” Can. J. Soil Sci. 90, 611–618 (2010). https://cdnsciencepub.com/ doi/10.4141/cjss10042.

    Article  Google Scholar 

  194. J. W. Scarrow, M. R. Balks, and P. C. Almond, “Three soil chronosequences in recessional glacial deposits near the polar plateau, in the Central Transantarctic Mountains, Antarctica,” Antarct. Sci. 26 (5), 573–583 (2014). https://doi.org/10.1017/S0954102014000078

    Article  Google Scholar 

  195. D. Scherler, H. Wulf, and N. Gorelick, “Global assessment of supraglacial debris-cover extents,” Geophys. Res. Lett. 45 (21), 11–798 (2018). https://doi.org/10.1029/2018GL080158

    Article  Google Scholar 

  196. D. Schulze-Makuch and D. H. Grinspoon, “Biologically enhanced energy and carbon cycling on Titan?,” Astrobiology 5 (4), 560–567 (2005). https://doi.org/10.1089/ast.2005.5.560

    Article  Google Scholar 

  197. T. Segawa, N. Takeuchi, H. Mori, R. M. Rathnayake, Z. Li, A. Akiyoshi, H. Satoh, and S. Ishii, “Redox stratification within cryoconite granules influences the nitrogen cycle on glaciers,” FEMS Microbiol. Ecol. 96 (11), fiaa199 (2020). https://doi.org/10.1093/femsec/fiaa199

  198. D. H. Shain, K. Halldórsdóttir, F. Pálsson, G. Aðalgeirsdóttir, A. Gunnarsson, Þ. Jónsson, … E. Arnason, “Colonization of maritime glacier ice by bdelloid Rotifera,” Mol. Phylogenet. Evol. 98, 280–287 (2016). https://doi.org/10.1016/j.ympev.2016.02.020

    Article  Google Scholar 

  199. G. A. Singer, C. Fasching, L. Wilhelm, J. Niggemann, P. Steier, T. Dittmar, and T. J. Battin, “Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate,” Nat. Geosci. 5 (10), 710–714 (2012). https://doi.org/10.1038/ngeo1581

    Article  Google Scholar 

  200. P. Singh and S. M. Singh, “Characterisation of yeasts and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic,” Polar Biol. 35, 575–583 (2012). https://doi.org/10.1007/s00300-011-1103-1

    Article  Google Scholar 

  201. M. Smirnova, U. Miamin, A. Kohler, L. Valentovich, A. Akhremchuk, A. Sidarenka, A. Dolgikh, and V. Shapaval, “Isolation and characterization of fast-growing green snow bacteria from coastal East Antarctica,” MicrobiologyOpen 10 (1), e1152 (2021). https://doi.org/10.1002/mbo3.1152

    Article  Google Scholar 

  202. C. A. S. Smith, C. A. Fox, and A. E. Hargrave, “Development of soil structure in some turbic cryosols in the Canadian low Arctic,” Can. J. Soil Sci. 71 (1), 11–29 (1991). https://doi.org/10.4141/cjss91-002

    Article  Google Scholar 

  203. H. J. Smith, A. Schmit, R. Foster, S. Littman, M. M. Kuypers, and C. M. Foreman, “Biofilms on glacial surfaces: hotspots for biological activity,” Biofilms Microbiomes 2 (1), 1–4 (2016). https://doi.org/10.1038/npjbiofilms.2016.8

    Article  Google Scholar 

  204. H. Sodemann, A. S. Palmer, C. Schwierz, M. Schwikowski, and H. Wernli, “The transport history of two Saharan dust events archived in an Alpine ice core,” Atmos. Chem. Phys. Discuss. 6, 667–688 (2006). https://doi.org/10.5194/acp-6-667-2006

    Article  Google Scholar 

  205. P. Sommers, J. L. Darcy, D. L. Porazinska, E. Gendron, A. G. Fountain, F. Zamora, … S. K. Schmidt, “Comparison of microbial communities in the sediments and water columns of frozen cryoconite holes in the McMurdo Dry Valleys, Antarctica,” Front. Microbiol. 10, 65 (2019). https://doi.org/10.3389/fmicb.2019.00065

    Article  Google Scholar 

  206. P. Sommers, R. S. Fontenele, T. Kringen, S. Kraberger, D. L. Porazinska, J. L. Darcy, K. Vincent, K. M. Cawley, A. J. Solon, L. Vimercati, and J. R. Varsani, “Single-stranded DNA viruses in antarctic cryoconite holes,” Viruses 11 (11), 1022 (2019). https://doi.org/10.3390/v11111022

    Article  Google Scholar 

  207. L. J. Stal, “Cyanobacterial mats and stromatolites,” in Ecology of Cyanobacteria II: Their Diversity in Space and Time, Ed. by B. A. Whitton (Springer, Netherlands, 2012), pp. 65–125.

    Google Scholar 

  208. H. Stefánsson, M. Peternell, M. Konrad-Schmolke, H. Hannesdóttir, E. J. Ásbjörnsson, and E. Sturkell, “Microplastics in glaciers: first results from the Vatnajökull ice cap,” Sustainability 13 (8), 4183 (2021). https://doi.org/10.3390/su13084183

    Article  Google Scholar 

  209. F. R. Stephens, “A forest ecosystem on a glacier in Alaska,” Arctic 22, 441–444 (1969).

    Article  Google Scholar 

  210. M. Stibal, E. C. Lawson, G. P. Lis, et al., “Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet,” Ann. Glaciol. 51 (56), 1–8 (2010). https://doi.org/10.3189/172756411795931958

    Article  Google Scholar 

  211. M. Stibal, M. Sabacka, and K. Kastova, “Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae,” Microb. Ecol. 52 (4), 644–654 (2006). https://doi.org/10.1007/s00248-006-9083-3

    Article  Google Scholar 

  212. M. Stibal, T. Jon, J. Cook, K. M. Mak, A. Hodson, and A. M. Anesio, “Environmental controls on microbial abundance and activity on the Greenland ice sheet: a multivariate analysis approach,” Microb. Ecol. 63, 74–84 (2012). https://doi.org/10.1007/s00248-011-9935-3

    Article  Google Scholar 

  213. M. Stibal, M. Šabacká, and J. Žárský, “Biological processes on glacier and ice sheet surfaces,” Nat. Geosci. 5 (11), 771–774 (2012). https://doi.org/10.1038/ngeo1611

    Article  Google Scholar 

  214. M. Stibal, J. E. Box, K. A. Cameron, P. L. Langen, M. L. Yallop, R. H. Mottram, A. L. Khan, N. P. Molotch, N. A. M. Chrismas, F. C. Quaglia, D. Remias, C. J. P. P. Smeets, M. R. Broeke, J. C. Ryan, A. Hubbard, M. Tranter, D. van As, and A. P. Ahlstrøm, “Algae drive enhanced darkening of bare ice on the Greenland ice sheet,” Geophys. Res. Lett. 44 (11), 463–471 (2017). https://doi.org/10.1002/2017GL075958

    Article  Google Scholar 

  215. A. Stubbins, E. Hood, P. A. Raymond, G. R. Aiken, R. L. Sleighter, P. J. Hernes, D. Butman, P. G. Hatcher, R. G. Striegl, P. Schuster, H. A. N. Abdulla, A. W. Vermilyea, D. T. Scott, and R. G. Spencer, “Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers,” Nat. Geosci. 5 (3), 198–201 (2012). https://doi.org/10.1038/ngeo1403Spencer

    Article  Google Scholar 

  216. N. Takeuchi, S. Kohshima, and K. Seko, “Structure, formation, darkening process of albedo reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier,” Arct., Antarct. Alp. 33, 115–122 (2001). https://doi.org/10.1080/15230430.2001.12003413

    Article  Google Scholar 

  217. N. Takeuchi, S. Kohshima, K. Goto-Azuma, and R. M. Koerner, “Biological characteristics of dark colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps),” Mem. Natl. Inst. Polar Res., Spec. Issue 54, 495–505 (2001).

    Google Scholar 

  218. N. Takeuchi, “Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite,” Ann. Glaciol. 34, 409–414 (2002).

    Article  Google Scholar 

  219. N. Takeuchi, “Surface albedo and characteristics of cryoconiteonan Alaska glacier (Gulkana Glacier in the Alaska Range),” Bull. Glaciol. Res. 19, 63–70 (2002).

    Google Scholar 

  220. N. Takeuchi, N. Nagatsuka, and J. Uetake, “Spatial variations in impurities (cryoconite) on glaciers in northwest Greenland,” Bull. Glaciol. Res. 32, 85–94 (2014). https://doi.org/10.5331/bgr.32.85

    Article  Google Scholar 

  221. N. Takeuchi, H. Nishiyama, and Z. Li, “Structure and formation process of cryoconite granules on Urumqi glacier No.1, Tien Shan, China,” Ann. Glaciol. 51 (56), 9–14 (2010). https://doi.org/10.3189/172756411795932010

    Article  Google Scholar 

  222. N. Takeuchi and Z. Li, “Characteristics of surface dust on Urumqi Glacier No. 1 in the Tien Shan Mountains, China,” Arct., Antarct. Alp. 40 (4), 744–750 (2008). https://doi.org/10.1657/1523-0430(07-094)

    Article  Google Scholar 

  223. N. Takeuchi, “Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier, Alaska Range,” J. Glaciol. 55, 701–709 (2009). https://doi.org/10.3189/002214309789470914

    Article  Google Scholar 

  224. N. Takeuchi, Y. Fujisawa, T. Kadota, S. Tanaka, M. Miyairi, T. Shirakawa, R. Kusaka, A. N. Fedorov, P. Konstantinov, and T. Ohata, “The effect of impurities on the surface melt of a glacier in the Suntar-Khayata mountain range, Russian Siberia,” Front. Earth Sci. 3, 82 (2015). https://doi.org/10.3389/feart.2015.00082

    Article  Google Scholar 

  225. N. Takeuchi, J. Uetake, K. Fujita, V. B. Aizen, and S. D. Nikitin, “A snow algal community on Akkem glacier in the Russian Altai mountains,” Ann. Glaciol. 43, 378–384 (2006). https://doi.org/10.3189/172756406781812113

    Article  Google Scholar 

  226. S. Tanaka, N. Takeuchi, M. Miyairi, Y. Fujisawa, T. Kadota, T. Shirakawa, R. Kusaka, S. Takahashi, H. Enomoto, T. Ohata, H. Yabuki, K. Konya, and A. F. Konstantinov, “Snow algal communities on glaciers in the Suntar-Khayata Mountain Range in eastern Siberia, Russia,” Polar Sci. 10 (3), 227–238 (2016). https://doi.org/10.1016/j.polar.2016.03.004

    Article  Google Scholar 

  227. M. Tedesco, C. M. Foreman, J. Anton, et al., “Comparative analysis of morphological, mineralogical and spectral properties of cryoconite in Jakobshavn Isbrae, Greenland, and Canada Glacier, Antarctica,” Ann. Glaciol. 54 (63), 147–157 (2013). https://doi.org/10.3189/2013AoG63A417

    Article  Google Scholar 

  228. F. Thevenon, M. Chiaradia, T. Adatte, C. Hueglin, and J. Poté, “Characterization of modern and fossil mineral dust transported to high altitude in the Western Alps: Saharan sources and transport patterns,” Adv. Meteorol., 674385 (2012). https://doi.org/10.1155/2012/67438

  229. A. Thomazini, E. S. Mendonca, D. B. Teixeira, I. C. C. Almeida, Jr. N. La Scala, L. P. Canellas, K. A. Spokas, D. M. B. P. Milori, C. V. G. Turbay, R. B. A. Fernandes, and C. E. G. R. Schaefer, “CO2 and N2O emissions in a soil chronosequence at a glacier retreat zone in Maritime Antarctica,” Sci. Total Environ. 521–522, 336–345 (2015).

    Article  Google Scholar 

  230. L. G. Tielidze and R. D. Wheate, “The greater Caucasus glacier inventory (Russia, Georgia and Azerbaijan),” The Cryosphere 12 (1), 81–94 (2018). https://doi.org/10.5194/tc-12-81-2018

    Article  Google Scholar 

  231. M. Tranter, E. A. Bagshaw, A. G. Fountain, and C. M. Foreman, “The biogeochemistry and hydrology of McMurdo Dry Valley glaciers: is there life on Martian ice now?,” in Life in Antarctic Deserts and Other Cold, Dry Environments, Ed. by P. T. Doran (Cambridge Univ. Press, Cambridge, 2010), pp. 195–220.

    Google Scholar 

  232. M. Tranter, A. G. Fountain, C. H. Fritsen, B. W. Lyons, J. C. Priscu, P. J. Statham, and K. A. Welch, “Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice,” Hydrol. Process. 18 (2), 379–387 (2004). https://doi.org/10.1002/hyp.5217

    Article  Google Scholar 

  233. R. I. Trindade and M. Macouin, “Palaeolatitude of glacial deposits and palaeogeography of Neoproterozoic ice ages,” C. R. Geosci. 339 (3–4), 200–211 (2007). https://doi.org/10.1016/j.crte.2007.02.006

  234. J. Uetake, S. Tanaka, K. Hara, Y. Tanabe, D. Samyn, H. Motoyama, S. Imura, and S. Kohshima, “Novel biogenic aggregation of moss gemmae on a disappearing African glacier,” PLoS One 9 (11), e112510 (2014). https://doi.org/10.1371/journal.pone.0112510

    Article  Google Scholar 

  235. J. Uetake, S. Tanaka, T. Segawa, N. Takeuchi, N. Nagatsuka, H. Motoyama, and T. Aoki, “Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland,” FEMS Microbiol. Ecol. 92 (9), fiw127 (2016). https://doi.org/10.1093/femsec/fiw127

    Article  Google Scholar 

  236. B. Van Vliet-Lanoë, “Frost and soils: implications for paleosols, paleoclimates and stratigraphy,” Catena 34 (1–2), 157–183 (1998). https://doi.org/10.1016/S0341-8162(98)00087-3

  237. B. Van Vliet-Lanoë, “Frost effects in soils,” in Soils and Quaternary Landscape Evolution, Ed. by J. Boardman (Wiley, Chichester, 1985), pp. 117–158.

    Google Scholar 

  238. J. L. Wadham, J. R. Hawkings, L. Tarasov, L. J. Gregoire, R. G. M. Spencer, M. Gutjahr, A. Ridgwell, and K. E. Kohfeld, “Ice sheets matter for the global carbon cycle,” Nat. Commun. 10, 3567 (2019). https://doi.org/10.1038/s41467-019-11394-4

    Article  Google Scholar 

  239. J. Wang, H. Haidong, and Z. Shiqiang, “Carbon dioxide flux in the ablation area of Koxkar glacier, western Tien Shan, China,” Ann. Glaciol. 55 (66), (2014). https://doi.org/10.3189/2014AoG66A060

  240. P. Wang, L. D’Imperioc, E. M. Biersmad, R. Rannikuc, W. Xuc, Q. Tiana, P. Ambusc, and B. Elberlingc, “Combined effects of glacial retreat and penguin activity on soil greenhouse gas fluxes on South Georgia, sub-Antarctica,” Sci. Total Environ. 718, 135255 (2019). https://doi.org/10.1016/j.scitotenv.2019.135255

    Article  Google Scholar 

  241. Y. Watanabe, J. E. Martini, and H. Ohmoto, “Geochemical evidence for terrestrial ecosystems 2.6 billion years ago,” Nature 408 (6812), 574 (2000). https://doi.org/10.1038/35046052

    Article  Google Scholar 

  242. D. Wei and X. Wang, “Recent climatic changes and wetland expansion turned Tibet into a net CH4 source,” Clim. Change 144, 657–670 (2017). https://doi.org/10.1007/s10584-017-2069-y

    Article  Google Scholar 

  243. K. Weisleitner, A. K. Perras, S. H. Unterberger, C. Moissl-Eichinger, D. T. Andersen, and B. Sattler, “Cryoconite hole location in East-Antarctic Untersee Oasis shapes physical and biological diversity,” Front. Microbiol. 11, 1165 (2020). https://doi.org/10.3389/fmicb.2020.01165

    Article  Google Scholar 

  244. J. W. Wiscombe and S. G. Warren, “A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols,” J. Atmos. Sci. 37, 2734–2745 (1980). https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2

    Article  Google Scholar 

  245. B. Wouters, A. S. Gardner, and G. Moholdt, “Global glacier mass loss during the GRACE satellite mission (2002–2016),” Front. Earth Sci. 7, 96 (2019). https://doi.org/10.3389/feart.2019.00096

    Article  Google Scholar 

  246. G. M. Wu, Z. Y. Cong, S. C. Kang, K. Kawamura, P. Q. Fu, Y. L. Zhang, X. Wan, S. -P. Gao, and B. Liu, “Brown carbon in the cryosphere: current knowledge and perspective,” Adv. Clim. Change Res. 7 (1–2), 82–89 (2016). https://doi.org/10.1016/j.accre.2016.06.002

  247. Y. Xu, A. J. Simpson, N. Eyles, and M. J. Simpson, “Sources and molecular composition of cryoconite organic matter from the Athabasca Glacier, Canadian Rocky Mountains,” Org. Geochem. 41, 177–186 (2010). https://doi.org/10.1016/j.orggeochem.2009.10.010

    Article  Google Scholar 

  248. J. Yan, X. Wang, P. Gong, C. Wang, and Z. Cong, “Review of brown carbon aerosols: Recent progress and perspectives,” Sci. Total Environ. 634, 1475–1485 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.083

    Article  Google Scholar 

  249. G. M. Young, V. V. Brunn, D. J. Gold, and W. E. L. Minter, “Earth’s oldest reported glaciation: physical and chemical evidence from the Archean Mozaan Group (∼2.9 Ga) of South Africa,” J. Geol. 106 (5), 523–538 (1998). https://doi.org/10.1086/516039

    Article  Google Scholar 

  250. X. Yue, Z. Li, J. Zhao, J. Fan, N. Takeuchi, and L. Wang, “Variation in albedo and its relationship with surface dust at Urumqi Glacier No. 1 in Tien Shan, China,” Front. Earth Sci. 8, 110 (2020). https://doi.org/10.3389/feart.2020.00110

    Article  Google Scholar 

  251. D. G. Zamolodchikov and D. V. Karelin, “An empirical model of carbon fluxes in Russian tundra,” Global Change Biol. 7 (2), 147–161 (2001). https://doi.org/10.1046/j.1365-2486.2001.00380.x

    Article  Google Scholar 

  252. J. D. Zarsky, M. Stibal, A. Hodson, B. Sattler, M. Schostag, L. H. Hansen, C. S. Jacobsen, and R. Psenner, “Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidising archaea,” Environ. Res. Lett. 8, 035044 (2013). https://doi.org/10.1088/1748-9326/8/3/035044

    Article  Google Scholar 

  253. J. Žárský, V. Žárský, M. Hanáček, and V. Žárský, “Cryogenian glacial habitats as a plant terrestrialisation cradle–the origin of the anydrophytes and Zygnematophyceae split,” Front. Plant Sci. 12, 735020 (2022). https://doi.org/10.3389/fpls.2021.735020

    Article  Google Scholar 

  254. K. Zawierucha, S. Coulson, and M. Michalcyzk, “Current knowledge of the Tardigrada of Svalbard with the first records of water bears from Nordaustlandet (High Arctic),” Polar Res. 32, 20886 (2013). https://doi.org/10.3402/polar.v32i0.20

    Article  Google Scholar 

  255. K. Zawierucha, G. Baccolo, B. Di Mauro, A. Nawrot, W. Szczuciński, and E. Kalińska, “Micromorphological features of mineral matter from cryoconite holes on Arctic (Svalbard) and alpine (the Alps, the Caucasus) glaciers,” Polar Sci. 22, 100482 (2019). https://doi.org/10.1016/j.polar.2019.100482

    Article  Google Scholar 

  256. K. Zawierucha, J. Buda, and A. Nawro, “Extreme weather event results in the removal of invertebrates from cryoconite holes on an Arctic valley glacier (Longyearbreen, Svalbard),” Ecol. Res. 34 (3), 370–379 (2019). https://doi.org/10.1111/1440-1703.1276

    Article  Google Scholar 

  257. K. Zawierucha, D. Stec, D. Lachowska-Cierlik, N. Takeuchi, Z. Li, and Ł. Michalczyk, “High mitochondrial diversity in a new water bear species (Tardigrada: Eutardigrada) from mountain glaciers in central Asia, with the erection of a new genus Cryoconicus,” Ann. Zool. 68 (1), 179–201 (2018). https://doi.org/10.3161/00034541ANZ2018.68.1.007

    Article  Google Scholar 

  258. P. Zennaro, N. Kehrwald, J. R. McConnell, S. Schüpbach, O. J. Maselli, J. Marlon, P. Vallelonga, D. Leuenberger, R. Zangrando, A. Spolaor, M. Borrotti, E. Barbaro, A. Gambaro, and C. Barbante, “Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core,” Clim. Past. 10 (5), 1905–1924 (2014). https://doi.org/10.5194/cp-10-1905-2014

    Article  Google Scholar 

  259. Y. Zhang, S. Kang, D. Wei, X. Luo, Z. Wang, and T. Gao, “Sink or source? Methane and carbon dioxide emissions from cryoconite holes, subglacial sediments, and proglacial river runoff during intensive glacier melting on the Tibetan Plateau,” Fundam. Res. 1 (3), 232–239 (2021). https://doi.org/10.1016/j.fmre.2021.04.005

    Article  Google Scholar 

  260. Y. Zhang, T. Gao, S. Kang, S. Allen, X. Luo, and D. Allen, “Microplastics in glaciers of the Tibetan Plateau: Evidence for the long-range transport of microplastics,” Sci. Total Environ. 758, 143634 (2021). https://doi.org/10.1016/j.scitotenv.2020.143634

    Article  Google Scholar 

  261. Y. Zhang, T. Gao, S. Kang, H. Shi, L. Mai, D. Allen, and S. Allen, “Current status and future perspectives of microplastic pollution in typical cryospheric regions,” Earth Sci. Rev. 226, 1–16 (2022). https://doi.org/10.1016/j.earscirev.2022.103924

    Article  Google Scholar 

  262. Y. Zhou, L. Zhou, X. He, K. S. Jang, X. Yao, Y. Hu, Y. Zhang, X. Li, R. G. M. Spencer, J. D. Brookes, and E. Jeppesen, “Variability in dissolved organic matter composition and biolability across gradients of glacial coverage and distance from glacial terminus on the Tibetan Plateau,” Environ. Sci. Technol. 53 (21), 12207–12217 (2019). https://doi.org/10.1021/acs.est.9b03348

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are very grateful to Bulat Rafaelevich Mavlyudov and Nikolai Ivanovich Osokin for assistance in organizing research, consultations, and inspiration.

Funding

This work was supported by the Russian Science Foundation, project no. 20-17-00212: collection of field materials, literature review, data systematization, and theoretical generalization on soil and soil-like bodies on glaciers. The issues concerning the assessment of 14C age of organic matter were considered within the framework of state assignment no. 0148-2019-0006, and the issues concerning the geochemistry of light-absorbing material on the surface of glaciers were considered within the framework of a Megagrant project, agreement no. 075-15-2021-599, 06.08.2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Mergelov.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

CONSENT TO PARTICIPATE

Informed consent was obtained from all individual participants included in the study.

Additional information

Translated by D. Konyushkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mergelov, N.S., Goryachkin, S.V., Zazovskaya, E.P. et al. Supraglacial Soils and Soil-Like Bodies: Diversity, Genesis, Functioning (Review). Eurasian Soil Sc. 56, 1845–1880 (2023). https://doi.org/10.1134/S1064229323602330

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323602330

Keywords:

Navigation