Skip to main content
Log in

Content and Mobility of Metals in Oligotrophic Peat Soils of the Cryolithozone in Western Siberia

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The ongoing climate changes have the greatest impact on the natural ecosystems in high-latitude areas because climate warming and ever increasing anthropogenic load associated with the development of Arctic regions contribute to degradation of frozen peatlands and an increase in the seasonal thaw depth. The research into oligotrophic peat soils (Cryic Histosols) of the northern territories in Western Siberia is relevant because their degradation enriches natural waters with organomineral substances containing a large set of chemical elements, including heavy metals, thereby enhancing the changes in the hydrogeochemical properties of natural waters of the North. The paper describes the main properties of peat sampled from different horizons of soil profiles in the key areas covering the territory of the Yamalo-Nenets autonomous okrug from north to south and from west to east. The chemical composition of soils has been analyzed at the Institute of Soil Science and Agricultural Chemistry (Siberian Branch, Russian Academy of Sciences) using standard methods. The concentrations of gross and mobile forms of metals (Fe, Ca, K, Na, Mg, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) have been determined using optical atomic emission spectrometry and flame atomic absorption spectrometry, respectively. A characteristic feature in the distribution of concentrations of the target chemical elements in oligotrophic peat soils in the northern part of Western Siberia is two maxima in soil profiles. The first maximum is confined to the upper horizons showing signs of degradation, while the second one is observed in the upper part of permafrost. Statistical analysis using principal component method shows that the low ash content, pH, and C/N ratio are associated with a high mobility of K, Cu, Zn, and Mg. The mobility of Fe, Mn, Pb, Cd, and Cr increases in the upper part of permafrost organogenic rock with an increase in the ash content, pH, and Ntot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. V. Abakumov and A. I. Popov, “Determination of carbon, nitrogen, oxidability of organic matter and carbon carbonates in one soil sample,” Pochvovedenie, No. 2, 186–194 (2005).

    Google Scholar 

  2. N. A. Avetov and E. A. Shishkonakova, “Oil contamination of soils in the taiga zone of Western Siberia,” Byull. Pochv. Inst. im. V. V. Dokuchaeva 68, 45–55 (2011). https://doi.org/10.19047/0136-1694-2011-68-45-55

    Article  Google Scholar 

  3. E. V. Agbalyan, E. V. Shinkaruk, T. L. Popova, and Yu. I. Maksimenko, “Ecological and geochemical situation in the territory of the Yamalo-Nenets Autonomous Okrug based on elemental analysis of biological media (hair) of the population,” Nauchn. Vestn. Yamalo-Nenetskogo Avtonomnogo Okruga, No. 2 (103), 34–40 (2019). https://doi.org/10.26110/ARCTIC.2019.103.2.004

    Article  Google Scholar 

  4. L. K. Altunina, L. I. Svarovskaya, I. G. Yaschenko, and E. A. El’chaninova, “Ecological state of water bodies in Middle Ob oil-producing areas,” Pet. Chem. 57 (5), 452–456 (2017). https://doi.org/10.1134/S0965544117020104

    Article  Google Scholar 

  5. I. Yu. Arestova, M. G. Opekunova, A. Yu. Opekunov, and S. Yu. Kukushkin, “Ecological and geochemical assessment of the state of the natural environment in oil production areas,” in Geochemistry of the Biosphere (Smolensk, Moscow, 2006), pp. 41–42.

  6. V. D. Vasilevskaya and V. V. Ivanov, Soils of the North of Western Siberia (Mosk. Gos. Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  7. Yu. N. Vodyanitskii, N. A. Avetov, A. T. Savichev, and S. Ya. Trofimov, “Characteristics of technogeochemical anomalies of peat soils contaminated with sludge in the oil production area in the Middle Ob region,” Agrokhimiya, No. 11, 82–90 (2012).

    Google Scholar 

  8. Yu. N. Vodyanitskii, A. V. Smagin, and A. S. Yakovlev, “Factors of variability in the content of mobile forms of heavy metals in soil,” Ekol. Vestn. Sev. Kavk., No. 1, 27–38 (2016).

  9. N. A. Volkova, I. S. Ivanova, D. A. Sokolov, Yu. V. Kolubaeva, and D. A. Chuikina, “Concentrations and sources of polycyclic aromatic hydrocarbons in water and bottom sediments of rivers in the northern oil and gas producing territories of Western Siberia,” Izv. Tomsk. Politekh. Univ. Inzhiniring Georesursov 334 (4), 135–148 (2023). https://doi.org/10.18799/24131830/2023/4/3924

    Article  Google Scholar 

  10. Geocryology of the USSR. Western Siberia (Nedra, Moscow, 1989) [in Russian].

  11. G. I. Griva, Geoecological Conditions for the Development of Gas Fields in Yamal (Tomsk. Gos. Univ., Tomsk, 2005).

    Google Scholar 

  12. L. V. Karpenko, “Assessment of the current state of swamps in the forest-tundra subzone under conditions of weak aerotechnogenic pollution,” Geogr. Prir. Resur., No. 3, 59–66 (2018). https://doi.org/10.21782/GIPR0206-1619-2018-3(59-66)

  13. Classification and Diagnosis of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  14. B. M. Kogut and A. S. Frid, “Comparative assessment of methods for determining humus content in soils,” Pochvovedenie, No. 9, 119–123 (1993).

    Google Scholar 

  15. S. V. Loiko, D. M. Kuz’mina, G. I. Istigechev, I. V. Kritskov, A. G. Lim, N. V. Klimova, A. A. Novoselov, A. O. Konstantinov, E. V. Novolodskaya, and S. P. Kulizhskii, “Transformation of morphological properties of soils due to shrub growth of spotted tundra,” Vestn. Tomsk. Gos. Univ. Biol., No. 59, 6–41 (2022).

  16. T. M. Minkina, G. V. Motuzova, and O. G. Nazarenko, Composition of Heavy Metal Compounds in Soils (Everest, Rostov-on-Don, 2009) [in Russian].

    Google Scholar 

  17. D. V. Moskovchenko, “Biogeochemical features of soils in the Messoyakha River basin (Tazovsky district of the Yamalo-Nenets Autonomous Okrug),” Vestn. Tyumen. Gos. Univ. Ekol. Prirodopol’zovanie 2 (2), 8–21 (2016). https://doi.org/10.21684/2411-7927-2016-2-2-8-21

    Article  Google Scholar 

  18. D. V. Moskovchenko and A. G. Babushkin, “Background content of mobile forms of metals in soils of the north of Western Siberia,” Vestn. Tyumen. Gos. Univ. Ekol. Prirodopol’zovanie 1 (3), 163–174 (2015).

    Google Scholar 

  19. G. V. Motuzova, Compounds of Microelements in Soils: Systemic Organization, Ecological Significance, Monitoring (Librokom, Moscow, 2013) [in Russian].

    Google Scholar 

  20. M. G. Opekunova, A. Yu. Opekunov, S. Yu. Kukushkin, and A. G. Ganul, “Background contents of heavy metals in soils and bottom sediments in the north of Western Siberia,” Eurasian Soil Sci. 52 (4), 380–395 (2019). https://doi.org/10.1134/S106422931902011X

    Article  Google Scholar 

  21. R. Yu. Pozhitkov, D. V. Moskovchenko, and A. A. Tigeev, “Elemental composition of peat deposits of the upland type in the Pur-Taz interfluve,” Geogr. Vestn., No. 1, 154–165 (2020). https://doi.org/10.17072/2079-7877-2020-1-154-165

  22. Field Guide on Russian Soils (Pochv. Inst. im. V.V. Dokuchaeva, 2008) [in Russian].

  23. V. V. Ponomareva and T. A. Plotnikova, “Some data on the degree of intramolecular oxidation of humus in different types of soils (on the issue of the conversion factor from carbon to humus),” Pochvovedenie, No. 7, 85–95 (1967).

    Google Scholar 

  24. E. A. Romanenko, D. V. Moskovchenko, A. A. Kudryavtsev, and G. N. Shigabaeva, “Mobile forms of metals in soils of the Nadym-Purov interfluve (Western Siberia),” Vestn. Nizhnevartovsk. Gos. Univ., No. 2, 136–145 (2020). https://doi.org/10.36906/2311-4444/20-2/18

  25. O. G. Savichev, A. K. Mazurov, M. A. Rudmin, A. A. Khvashchevskaya, and A. B. Dauletova, “Changes in the chemical composition of acidic extracts along the depth of the peat deposit in the intrabog ecosystems of the Vasyugan swamp (Western Siberia),” Izv. Tomsk. Politekh. Univ. Inzhiniring Georesursov 329 (9), 101–116 (2018). https://doi.org/10.18799/24131830/2018/9/2093

    Article  Google Scholar 

  26. D. A. Sokolov, Extended Abstract of Doctoral Dissertation in Biology (Novosibirsk, 2019).

  27. D. A. Sokolov, I. S. Ivanova, S. V. Morozov, T. G. Pchelnikova, and E. A. Soldatova, “Polycyclic aromatic hydrocarbons in oligotrophic peat soils of the northern territories of Western Siberia,” Eurasian Soil Sci. 55 (10), 1360–1370 (2022). https://doi.org/10.1134/S1064229322100143

    Article  Google Scholar 

  28. V. A. Stepanova and O. S. Pokrovskii, “Macroelement composition of peat in convex raised bogs in the middle taiga of Western Siberia (using the example of the Mukhrino bog complex),” Vestn. Tomsk. Gos. Univ., No. 352, 211–214 (2011).

  29. S. A. Sypalov, A. Yu. Kozhevnikov, N. L. Ivanchenko, Yu. A. Popova, and N. A. Sobolev, “Assessment of peat pollution by heavy metals depending on the depth of occurrence,” Solid Fuel Chem. 54 (1), 32–36 (2020). https://doi.org/10.3103/S0361521920010097

    Article  Google Scholar 

  30. A. I. Syso, Patterns of Distribution of Chemical Elements in Soil-Forming Rocks and Soils of Western Siberia (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2007) [in Russian].

    Google Scholar 

  31. A. I. Syso, S. V. Vasil’ev, B. A. Smolentsev, and A. A. Sen’kov, “Landscape-geochemical analysis of changes in the natural environment in oil production areas,” Sib. Ekol. Zh. 8 (3), 333–342 (2001).

    Google Scholar 

  32. M. P. Tentyukov, “Peculiarities of the distribution of chemical elements in frozen soils,” Kriosfera Zemli 17 (3), 100–107 (2013).

    Google Scholar 

  33. Yu. S. Shafrinskii, S. G. Samokhvalov, S. S. Bednarzhevskii, E. V. Akinina, and D. P. Nalobin, State Standard Samples of Soil Composition (MASS, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  34. E. A. Shishkonakova, N. A. Avetov, T. V. Ananko, M. I. Gerasimova, and N. V. Savitskaya, “Swamp peat soils of the taiga and subtaiga zones of Western Siberia on a digital model of the soil map of Russia at a scale of 1 : 2,500,000 in the format of the soil classification of Russia,” Byull. Pochv. Inst. im. V.V. Dokuchaeva 104, 223–240 (2020). https://doi.org/10.19047/0136-1694-2020-104-223-240

  35. E. Yu. Yakovlev, A. S. Druzhinina, S. V. Druzhinin, D. D. Bedrina, A. S. Orlov, R. K. Spirov, E. V. Mishchenko, and E. V. Zhukovskaya, “Estimation of physicochemical parameters and distribution of metals in the raised bog of the Arkhangelsk oblast,” Usp. Sovrem. Estestvozn., No. 5, 115–120 (2020). https://doi.org/10.17513/use.37401

  36. P. Ala-aho, C. Soulsby, O. S. Pokrovsky, S. N. Kirpotin, J. Karlsson, S. Serikova, S. N. Vorobyev, R. M. Manasypov, S. V. Loiko, and D. Tetzlaff, “Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape,” J. Hydrol. 556, 279–293 (2018). https://doi.org/10.1016/j.jhydrol.2017.11.024

    Article  Google Scholar 

  37. S. E. Barrett and S. A. Watmough, “Factors controlling peat chemistry and vegetation composition in Sudbury peatlands after 30 years of pollution emission reductions,” Environ. Pollut. 206, 122–132 (2015). https://doi.org/10.1016/j.envpol.2015.06.021

    Article  Google Scholar 

  38. J. L. R. Gallego, J. E. Ortiz, C. Sierra, T. Torres, and J. F. Llamas, “Multivariate study of trace element distribution in the geological record of Roñanzas Peat Bog (Asturias, N. Spain. Paleoenvironmental evolution and human activities over the last 8000calyr BP,” Sci. Total Environ. 454–455, 16–29 (2013). https://doi.org/10.1016/j.scitotenv.2013.02.083

    Article  Google Scholar 

  39. IUSS Working Group WRB, World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (Union of Soil Sciences, Vienna, 2022).

    Google Scholar 

  40. I. S. Ivanova, L. S. Shirokova, J. Rols, and O. S. Pokrovsky, “Partitioning of dissolved organic carbon, major element and trace metal during laboratory freezing of organic leachates from permafrost peatlands,” Appl. Sci. 13, 4856 (2023). https://doi.org/10.3390/app13084856

    Article  Google Scholar 

  41. X. Ji, E. Abakumov, V. Tomashunas, I. Antcibor, C. Knoblauch, S. Zubzycki, E. and M. Pfeiffer, “Influence of anthropogenic activities on metals in arctic permafrost: a characterization of benchmark soils on the Yamal and Gydan peninsulas in Russia,” Arch. Environ. Contam. Toxicol. 76, 540–553 (2019). https://doi.org/10.1007/s00244-019-00607-y

    Article  Google Scholar 

  42. D. M. Kuzmina, A. G. Lim, S. V. Loiko, N. Shefer, L. S. Shirokova, F. Julien, J. Rols, and O. S. Pokrovsky, “Dispersed ice of permafrost peatlands represents an important source of labile carboxylic acids, nutrients and metals,” Geoderma 429, 116256 (2023). https://doi.org/10.1016/j.geoderma.2022.116256

    Article  Google Scholar 

  43. A. G. Lim, S. V. Loiko, D. M. Kuzmina, I. V. Krickov, L. S. Shirokova, S. P. Kulizhskiy, and O. S. Pokrovsky, “Organic carbon, and major and trace elements reside in labile low-molecular form in the ground ice of permafrost peatlands: a case study of colloids in peat ice of Western Siberia,” Environ. Sci.: Processes Impacts 24 (266), 1443–1459 (2022). https://doi.org/10.1039/D1EM00547B

    Article  Google Scholar 

  44. A. G. Lim, S. V. Loiko, D. M. Kuzmina, I. V. Krickov, L. S. Shirokova, S. P. Kulizhskiy, S. N. Vorobyev, and O. S. Pokrovsky, “Dispersed ground ice of permafrost peatlands: potential unaccounted carbon, nutrient and metal sources,” Chemosphere 266, 128953 (2021). https://doi.org/10.1016/j.chemosphere.2020.128953

    Article  Google Scholar 

  45. A. G. Lim, S. V. Loiko, T. V. Raudina, I. I. Volkova, and V. P. Seredina, “Element composition of peat deposits in flat frost mound bogs of the Pyakupur River (northern taiga of West Siberia),” Ukr. J. Ecol. 8, 79–87 (2018). https://doi.org/10.15421/2018_190

    Article  Google Scholar 

  46. H. Liu, Y. Gu, Y. Qin, Z. Yu, X. Huang, Sh. Xie, M. Zheng, Zh. Zhang, and Sh. Cheng, “The elemental enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in response to changes in East Asian monsoon and human activity since 20,000 cal yr BP,” Sci. Total Environ. 757, 143990 (2021). https://doi.org/10.1016/j.scitotenv.2020.143990

    Article  Google Scholar 

  47. S. Loiko, T. Raudina, A. Lim, D. Kuzmina, S. Kulizhskiy, and O. Pokrovsky, “Microtopography controls of carbon and related elements distribution in the West Siberian frozen bogs,” Geosciences 7, 291 (2019). https://doi.org/10.3390/geosciences9070291

    Article  Google Scholar 

  48. A. Monhonval, J. Strauss, E. Mauclet, C. Hirst, N. Bemelmans, G. Grosse, L. Schirrmeister, M. Fuchs, and S. Opfergelt, “Iron redistribution upon thermokarst processes in the Yedoma domain,” Front. Earth Sci. 9, (2021). https://doi.org/10.3389/feart.2021.703339

  49. Y. N. Morgalev, I. V. Lushchaeva, T. G. Morgaleva, L. G. Kolesnichenko, S. V. Loiko, I. V. Krickov, A. G. Lim, et al., “Bacteria primarily metabolize at the active layer/permafrost border in the peat core from a permafrost region in western Siberia,” Polar Biol. 40, 1645–1659 (2017). https://doi.org/10.1007/s00300-017-2088-1

    Article  Google Scholar 

  50. O. S. Pokrovsky, R. M. Manasypov, S. V. Loiko, and L. S. Shirokova, “Organic and organo-mineral colloids in discontinuous permafrost zone,” Geochim. Cosmochim. Acta 188, 1–20 (2016). https://doi.org/10.1016/j.gca.2016.05.035

    Article  Google Scholar 

  51. V. Polyakov, K. Orlova, and E. Abakumov, “Evaluation of carbon stocks in the soils of Lena River Delta on the basis of application of “dry combustion” and Tyurin’s methods of carbon determination,” Biol. Commun. 62, 67–72 (2017). https://doi.org/10.21638/11701/spbu03.2017.202

    Article  Google Scholar 

  52. S. Pratte, K. Bao, J. Shen, L. Mackenzie, A. Klamt, G. Wang, and W. Xing, “Recent atmospheric metal deposition in peatlands of northeast China: a review,” Sci. Total Environ. 626, 1284–1294 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.183

    Article  Google Scholar 

  53. T. V. Raudina, S. V. Loiko, A. G. Lim, I. V. Krickov, L. S. Shirokova, G. I. Istigechev, D. M. Kuzmina, S. P. Kulizhsky, S. N. Vorobyev, and O. S. Pokrovsky, “Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia,” Biogeosciences, No. 14, 3561–3584 (2017). https://doi.org/10.5194/bg-14-3561-2017

    Article  Google Scholar 

  54. C. Rosca, R. Schoenberg, E. L. Tomlinson, and B. S. Kamber, “Combined zinc-lead isotope and trace-metal assessment of recent atmospheric pollution sources recorded in Irish peatlands,” Sci. Total Environ. 658, 234–249 (2019). https://doi.org//10.1016/j.scitotenv.2018.12.049

    Article  Google Scholar 

  55. D. A. Sokolov, I. S. Ivanova, T. I. Siromlya, E. A. Soldatova, and Yu. V. Kolubaeva, “Elemental composition of the oligotrophic peat soils in Yamalo-Nenets autonomous district (Western Siberia),” WSPCC-2021. IOP Conf. Series: Earth Environ. Sci. 1093, 012001 (2022). https://doi.org/10.1088/1755-1315/1093/1/012001

  56. V. A. Stepanova, O. S. Pokrovsky, J. Viers, N. P. Mironycheva-Tokareva, N. P. Kosykh, E. K. Vishnyakova, “Elemental composition of peat profiles in Western Siberia: effect of the micro-landscape, latitude position and permafrost coverage,” Appl. Geochem. 53, 53–70 (2015). https://doi.org/10.1016/j.apgeochem.2014.12.004

    Article  Google Scholar 

  57. R. Vasilevich, M. Vasilevich, E. Lodygin, and E. Abakumov, “Geochemical characteristics of the vertical distribution of heavy metals in the hummocky peatlands of the cryolithozone,” Int. J. Environ. Res. Public Health 20, 3847 (2023). https://doi.org/10.3390/ijerph20053847

    Article  Google Scholar 

  58. R. S. Vasilevich, “Major and trace element compositions of hummocky frozen peatlands in the forest–tundra of Northeastern European Russia,” Geochem. Int. 56, 1158–1172 (2018). https://doi.org/10.1134/S0016702918100129

    Article  Google Scholar 

Download references

Funding

Peat sampling was supported by the budget of the Tomsk Branch of the Trofimuk Institute of Oil and Gas Geology and Geophysics, Siberian Branch, Russian Academy of Sciences, project no. 0266-2022-0016 and the chemical analysis of samples was supported by the Institute of Soil Science and Agricultural Chemistry, Siberian Branch, Russian Academy of Sciences, project no. 121031700-316-9. Data interpretation was supported by the Russian Science Foundation, project no. 20-77-10084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sokolov.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

CONSENT TO PARTICIPATE

Informed consent was obtained from all individual participants included in the study.

Additional information

Translated by G. Chirikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, D.A., Ivanova, I.S. & Siromlya, T.I. Content and Mobility of Metals in Oligotrophic Peat Soils of the Cryolithozone in Western Siberia. Eurasian Soil Sc. 56, 1925–1939 (2023). https://doi.org/10.1134/S1064229323602251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323602251

Keywords:

Navigation