Skip to main content
Log in

The Potential of Mycorrhizal Fungi to Increase Terrestrial Ecosystem Carbon Sink: a Review

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

Increasing terrestrial ecosystem carbon sink is an effective way to mitigate the rise of atmospheric carbon dioxide (CO2) concentration and achieve the goal of “carbon neutrality”. Mycorrhizal fungi are beneficial microorganisms that can form symbiotic relationships with 90% of plants in terrestrial ecosystems, and the symbiont contributes significantly to soil and plant carbon sink. In the review, we take arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF), which are the most extensively studied currently, as the narrative objects, and discuss the carbon sink enhancement potential of mycorrhizal fungi from the following four aspects. The first, mycorrhizal fungi indirectly increase the plant carbon sink by promoting photosynthesis and increasing biomass in the host plant, and this advantage can be maintained even under stressful conditions. The second, the process of carbon source transportation between AMF-plant symbionts and EMF-plant symbionts is described in this paper. The third, review describes that mycorrhizal fungi contribute to soil carbon sink by increasing carbon input as well as decreasing carbon output. The fourth, we point out the shortcomings of the current study and provide a prospect for future research, with the aim to provide theoretical support for increasing terrestrial carbon sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Anjana and M. Sonal, “Role of arbuscular mycorrhizal fungi as an underground saviuor for protecting plants from abiotic stresses,” Physiol. Mol. Biol. Plants 27 (11), (2021). https://doi.org/10.1007/s12298-021-01091-2

  2. C. Averill, B. L. Turner, and A. C. Finzi, “Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage,” Nature 505 (7484), 543–545 (2014). https://doi.org/10.1038/nature12901

    Article  Google Scholar 

  3. C. Averill and C.V. Hawkes, “Ectomycorrhizal fungi slow soil carbon cycling,” Ecol. Lett. 19 (8), 937–947 (2016). https://doi.org/10.1111/ele.12631

    Article  Google Scholar 

  4. S. M. Y. Azizi, S. H. Sarghein, A. Majd, and M. Peyvandi, “The effects of the electromagnetic fields on the biochemical components, enzymatic and non-enzymatic antioxidant systems of tea Camellia sinensis L.,” Physiol. Mol. Biol. Plants 25 (6), 1445–1456 (2019). https://doi.org/10.1007/s12298-019-00702-3

    Article  Google Scholar 

  5. B. Bolin, “Changes of land biota and their importance for the carbon cycle,” Science 196 (4290), 613–615 (1977). https://doi.org/10.1126/science.196.4290.613

    Article  Google Scholar 

  6. X. Bai, H. Hao, Z. Hu, and P. Leng, “Ectomycorrhizal inoculation enhances the salt tolerance of Quercus mongolica seedlings,” Plants (Basel) 10, 1790 (2021). https://doi.org/10.3390/plants10091790

    Article  Google Scholar 

  7. E. Bandou, F. Lebailly, F. Muller, M. Dulormne, A. Toribio, J. Chabrol, R. Courtecuisse, C. Plenchette, Y. Prin, and R. Duponnois, “The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings.,” Mycorrhiza 16 (8), 559–565 (2006). https://doi.org/16:559-565. https://doi.org/10.1007/s00572-006-0073-6

    Article  Google Scholar 

  8. M. V. Barbosa, D. D. F. Pedroso, N. Curi, and M. A. Carbone Carneiro, “Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates?,” Cienc. Agrotecnol. 43, e003519 (2019). https://doi.org/10.1590/1413-7054201943003519

    Article  Google Scholar 

  9. N. Begum, C. Qin, M. A. Ahanger, S. Raza, M. I. Khan, M. Ashraf, N. Ahmed, and L. Zhang, “Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance,” Front. Plant Sci. 10, 1068 (2019). https://doi.org/10.3389/fpls.2019.01068

    Article  Google Scholar 

  10. A. Bisht, S. Bhalla, A. Kumar, J. Kaur, and N. Garg, “Arbuscular mycorrhizae impart Cd tolerance in Cajans cajan (L.) Millsp. by upregulating the expression of metallothionein (CcMT1) and phytochelatin synthase (CcPCS1) genes,” J. Plant Growth Regul., (2022). https://doi.org/10.1007/s00344-022-10864-2

  11. K. A. Blee and A. J. Anderson, “Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules.,” Plant Mol. Biol. 50 (2), 197–211(2002). https://doi.org/10.1023/A:1016038010393

    Article  Google Scholar 

  12. W. S. Broecker, T. Takahashi, H. J. Simpson, and T. H. Peng, “Fate of fossil fuel carbon dioxide and the global carbon budget,” Science 206 (4417), 409–418 (1979). https://doi.org/10.1126/science.206.4417.409

    Article  Google Scholar 

  13. M. C. Brundrett, “Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis,” Plant Soil 320 (1/2), 37–77 (2009). https://doi.org/10.1007/s11104-008-9877-9

    Article  Google Scholar 

  14. G. C. Canton, A. A. Bertolazi, A. J. D. Cogo, F. J. Eutropio, J. Melo, S. B. de Souza, C. A. Krohling, E. Campostrini, A. G. Da Silva, and A. R. Facanha, “Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus grandis,” Mycorrhiza 26 (5), 475–487 (2016). https://doi.org/10.1007/s00572-016-0686-3

    Article  Google Scholar 

  15. R. Chaturvedi, P. J. C. Favas, J. Pratas, M. Varun, and M. S. Paul, “Effect of Glomus mossae on accumulation efficiency, hazard index and antioxidant defense mechanisms in tomato under metal(loid) Stress,” Int. J. Phytorem. 20 (9), 885–894 (2018). https://doi.org/10.1080/15226514.2018.1438360

    Article  Google Scholar 

  16. B. D. Chen, M. Yu, Z. P. Hao, W. Xie, and X. Zhang, “Research progress in arbuscular mycorrhizal technology,” J. Appl. Ecol. 30 (3), 1035–1046 (2019). https://doi.org/10.13287/j.1001-9332.201903.037

    Article  Google Scholar 

  17. H. Cheng, Y. Zou, Q. Wu, and K. Kuca, “Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating H+-ATPase activity and gene expression,” Front. Plant Sci. 12, 659694 (2021). https://doi.org/10.3389/fpls.2021.659694

    Article  Google Scholar 

  18. A. Correa, R. Hampp, E. Magel, and M. Martins-Loucao, “Carbon allocation in ectomycorrhizal plants at limited and optimal N supply: an attempt at unraveling conflicting theories,” Mycorrhiza 21 (1), 35–51 (2011). https://doi.org/10.1007/s00572-010-0309-3

    Article  Google Scholar 

  19. M. E. Craig, B. L. Turner, C. Liang, K. Clay, D. J. Johnson, and R. P. Phillips, “Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter,” Global Change Biol. 24 (8), 3317–3330 (2018). https://doi.org/10.1111/gcb.14132

    Article  Google Scholar 

  20. K. Cullings and P. Courty, “Saprotrophic capabilities as functional traits to study functional diversity and resilience of ectomycorrhizal community,” Oecologia 161 (4), 661–664 (2009). https://doi.org/10.1007/s00442-009-1434-6

    Article  Google Scholar 

  21. J. Doidy, D. van Tuinen, O. Lamotte, M. Corneillat, G. Alcaraz, and D. Wipf, “The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi,” Mol. Plant 5 (6), 1346–1358 (2012). https://doi.org/10.1093/mp/sss079

    Article  Google Scholar 

  22. M. G. Dosskey, R. G. Linderman, and L. Boersma, “Carbon-sink stimulation of photosynthesis in Douglas fir seedlings by some ectomycorrhizas.,” New Phytol. 115 (2), 269–274 (1990). https://doi.org/10.1111/j.1469-8137.1990.tb00452.x

    Article  Google Scholar 

  23. A. M. El-Sawah, G. G. Abdel-Fattah, P. Holford, S. M. Korany, E. A. Alsherif, H. AbdElgawad, Z. Ulhassan, I. Josko, B. Ali, and M. S. Sheteiwy, “Funneliformis constrictum modulates polyamine metabolism to enhance tolerance of Zea mays L. to salinity,” Microbiol. Res. 266, 127254 (2023). https://doi.org/10.1016/j.micres.2022.127254

    Article  Google Scholar 

  24. X. Fan, H. Pan, Y. Ping, G. Jin, and F. Song, “The underlying mechanism of soil aggregate stability by fungi and related multiple factor: a review,” Eurasian Soil Sci. 55 (2), 242–250 (2022). https://doi.org/10.1134/S1064229322020065

    Article  Google Scholar 

  25. J. Fang, G. Yu, L. Liu, S. Hu, and F. S. I. Chapin, “Climate change, human impacts, and carbon sequestration in China INTRODUCTION,” Proc. Natl. Acad. Sci. U. S. A. 115 (16), 4015–4020 (2018). https://doi.org/10.1073/pnas.1700304115

    Article  Google Scholar 

  26. F. Fayaz and M. Zahedi, “Beneficial effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) nutritional status and tolerance indices under soil salinity stress,” J. Plant Nutr. 45 (2), 185–201 (2021). https://doi.org/10.1080/01904167.2021.1952228

    Article  Google Scholar 

  27. D. S. Feeney, T. Daniell, P. D. Hallett, J. Illian, K. Ritz, and I. M. Young, “Does the presence of glomalin relate to reduced water infiltration through hydrophobicity?,” Can. J. Soil Sci. 84 (4), 365–372 (2004). https://doi.org/10.4141/s03-095

    Article  Google Scholar 

  28. W. Fei, S. Yang, J. Hu, F. Yang, G. Qu, D. Peng, and B. Zhou, “Research advances of WRINKLED1 (WRI1) in plants,” Funct. Plant Biol. 47 (3), 185–194 (2020). https://doi.org/10.1071/FP19225

    Article  Google Scholar 

  29. C. W. Fernandez, J. A. Langley, S. Chapman, M. L. McCormack, and R. T. Koide, “The decomposition of ectomycorrhizal fungal necromass,” Soil Biol. Biochem. 93, 38–49 (2016). https://doi.org/10.1016/j.soilbio.2015.10.017

    Article  Google Scholar 

  30. R. Fokom, S. Adamou, M. C. Teugwa, A. D. B. Boyogueno, W. L. Nana, M. E. L. Ngonkeu, N. S. Tchameni, D. Nwaga, G. T. Ndzomo, and P. H. A. Zollo, “Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon,” Soil Tillage Res. 120, 69–75 (2012). https://doi.org/10.1016/j.still.2011.11.004

    Article  Google Scholar 

  31. P. Friedlingstein, M. W. Jones, M. O’Sullivan, R. M. Andrew, D. C. E. Bakker, J. Hauck, C. Le Quere, G. P. Peters, W. Peters, and J. Pongratz, “Global carbon budget 2021,” Earth Syst. Sci. Data 14 (4), 1917–2005 (2022). https://doi.org/10.5194/essd-14-1917-2022

    Article  Google Scholar 

  32. P. Friedlingstein, M. O’Sullivan, M. W. Jones, R. M. Andrew, J. Hauck, A. Olsen, G. P. Peters, W. Peters, J. Pongratz, and S. Sitch, “Global carbon budget 2020,” Earth Syst. Sci. Data 12 (4), 3269–3340 (2020). https://doi.org/10.5194/essd-12-3269-2020

    Article  Google Scholar 

  33. M. Y. Gao, X. W. Chen, W. X. Huang, L. Wu, Z. S. Yu, L. Xiang, C. H. Mo, Y. W. Li, Q. Y. Cai, and M. H. Wong, “Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root,” J. Hazard. Mater. 416, 125894 (2021). https://doi.org/10.1016/j.jhazmat.2021.125894

    Article  Google Scholar 

  34. S. Garcia-Rodriguez, C. Azcon-Aguilar, and N. Ferrol, “Transcriptional regulation of host enzymes involved in the cleavage of sucrose during arbuscular mycorrhizal symbiosis,” Physiol. Plant. 129 (4), 737–746 (2007). https://doi.org/10.1111/j.13993054.2007.00873.x

    Article  Google Scholar 

  35. M. E. Gavito, I. Jakobsen, T. N. Mikkelsen, and F. Mora, “Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength,” New Phytol. 223 (2), 896–907 (2019). https://doi.org/10.1111/nph.15806

    Article  Google Scholar 

  36. A. Genre, L. Lanfranco, S. Perotto, and P. Bonfante, “Unique and common traits in mycorrhizal symbioses,” Nat. Rev. Microbiol. 18 (11), 649–660 (2020). https://doi.org/10.1038/s41579-020-0402-3

    Article  Google Scholar 

  37. G. Gleixner, N. Poirier, R. Bol, and J. Balesdent, “Molecular dynamics of organic matter in a cultivated soil,” Org. Geochem. 33 (3), 357–366 (2002). https://doi.org/10.1016/s0146-6380(01)00166-8

    Article  Google Scholar 

  38. D. L. Godbold, M. R. Hoosbeek, M. Lukac, M. F. Cotrufo, I. A. Janssens, R. Ceulemans, A. Polle, E. J. Velthorst, G. Scarascia-Mugnozza, and P. De Angelis, “Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter,” Plant Soil 281 (1/2), 15–24 (2006). https://doi.org/10.1007/s11104-005-3701-6

    Article  Google Scholar 

  39. G. Gopalakrishnan, M. C. Negri, and S. W. Snyder, “A novel framework to classify marginal land for sustainable biomass feedstock production,” J. Environ. Qual. 40 (5), 1593–1600 (2011). https://doi.org/10.2134/jeq2010.0539

    Article  Google Scholar 

  40. C. Hachani, M. S. Lamhamedi, C. Cameselle, S. Gouveia, A. Zine El Abidine, D. P. Khasa, and Z. Bejaoui, “Effects of ectomycorrhizal fungi and heavy metals (Pb, Zn, and Cd) on growth and mineral nutrition of Pinus halepensis seedlings in North Africa,” Microorganisms 8, 2033 (2020). https://doi.org/10.3390/microorganisms8122033

    Article  Google Scholar 

  41. A. Hashem, A. A. Alqarawi, R. Radhakrishnan, A. F. Al-Arjani, H. A. Aldehaish, D. Egamberdieva, and E. F. Abd Allah, “Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L.,” Saudi J. Biol. Sci. 25 (6), 1102–1114 (2018). https://doi.org/10.1016/j.sjbs.2018.03.009

    Article  Google Scholar 

  42. J. He, Y. Zou, Q. Wu, and K. Kuca, “Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes,” Sci. Hortic. 262, 108745 (2020). https://doi.org/10.1016/j.scienta.2019.108745

    Article  Google Scholar 

  43. J. Heinonsalo, E. Juurola, A. Linden, and J. Pumpanen, “Ectomycorrhizal fungi affect Scots pine photosynthesis through nitrogen and water economy, not only through increased carbon demand,” Environ. Exp. Bot. 109, 103–112 (2015). https://doi.org/10.1016/j.envexpbot.2014.08.008

  44. N. Helber, K. Wippel, N. Sauer, S. Schaarschmidt, B. Hause, and N. Requena, “A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants,” Plant Cell 23 (10), 3812–3823 (2011). https://doi.org/10.1105/tpc.111.089813

    Article  Google Scholar 

  45. E. A. Hobbie, J. V. Colpaert, M. W. White, A. P. Ouimette, and S. A. Macko, “Nitrogen form, availability, and mycorrhizal colonization affect biomass and nitrogen isotope patterns in Pinus sylvestris,” Plant Soil 310 (1–2), 121–136 (2008). https://doi.org/10.1007/s11104-008-9637-x

    Article  Google Scholar 

  46. J. Hu, A. Yang, A. Zhu, J. Wang, J. Dai, M. H. Wong, and X. Lin, “Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China,” J. Microbiol. 53 (7), 454–461 (2015). https://doi.org/10.1007/s12275-015-5108-2

    Article  Google Scholar 

  47. D. Huang, M. Ma, Q. Wang, M. Zhang, G. Jing, C. Li, and F. Ma, “Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway,” Plant Physiol. Biochem. 149, 245–255 (2020). https://doi.org/10.1016/j.plaphy.2020.02.020

    Article  Google Scholar 

  48. C. Jansson, C. Faiola, A. Wingler, X. Zhu, A. Kravchenko, M. De Graaff, A. J. Ogden, P. P. Handakumbura, C. Werner, and D. M. Beckles, “Crops for carbon farming,” Front. Plant Sci. 12, 636709 (2021). https://doi.org/10.3389/fpls.2021.636709

    Article  Google Scholar 

  49. Y. Jiang, W. Wang, Q. Xie, N. Liu, L. Liu, D. Wang, X. Zhang, C. Yang, X. Chen, and D. Tang, “Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi,” Science 356 (6343), 1172–1175 (2017). https://doi.org/10.1126/science.aam9970

    Article  Google Scholar 

  50. Z. Jing, E. Alf, S. B. D, and W. Håkan, “The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-arctic grassland,” Soil Biol. Biochem. 147, 107826 (2020). https://doi.org/10.1016/j.soilbio.2020.107826

    Article  Google Scholar 

  51. Z. Jinxiu, L. Su, K. Yan, M. Li, Y. He, Y. Zu, F. Zhan, and T. Li, “An arbuscular mycorrhizal fungus increased the macroaggregate proportion and reduced cadmium leaching from polluted soil.,” Int. J. Phytorem. 23 (7), 684–692 (2020). https://doi.org/10.1080/15226514.2020.1849014

    Article  Google Scholar 

  52. M. J. Kemppainen, M. C. Alvarez Crespo, and A. G. Pardo, “fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by l-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources,” Environ. Microbiol. Rep. 2 (4), 541–553 (2010). https://doi.org/10.1111/j.1758-2229.2009.00111.x

    Article  Google Scholar 

  53. R. T. Koide, J. N. Sharda, J. R. Herr, and G. M. Malcolm, “Ectomycorrhizal fungi and the biotrophy-saprotrophy continuum,” New Phytol. 178 (2), 230–233 (2008).https://doi.org/10.1111/j.1469-8137.2008.02401.x

  54. S. P. Kumar, S. Meenakshi, and T. B. Nath, “Glomalin: an arbuscular mycorrhizal fungal soil protein.,” Protoplasma 250 (3), 663–669 (2013). https://doi.org/10.1007/s00709-012-0453-z

    Article  Google Scholar 

  55. G. R. L, and G. P. D, “Mycorrhiza and litter decomposition,” Nature 233 (5315), 133 (1971). https://doi.org/10.1038/233133a0

    Article  Google Scholar 

  56. J. Lehmann and M. Kleber, “The contentious nature of soil organic matter,” Nature 528 (7580), 60–68 (2015). https://doi.org/10.1038/nature16069

    Article  Google Scholar 

  57. E. F. Leifheit, E. Verbruggen, and M. C. Rillig, “Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation,” Soil Biol. Biochem. 81, 323–328 (2015). https://doi.org/10.1016/j.soilbio.2014.12.003

    Article  Google Scholar 

  58. Y. Lekberg and R. T. Koide, “Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003,” New Phytol. 168 (1), 189–204 (2005). https://doi.org/10.1111/j.1469-8137.2005.01490.x

    Article  Google Scholar 

  59. I. Lenoir, J. Fontaine, and A. L. Sahraoui, “Arbuscular mycorrhizal fungal responses to abiotic stresses: a review,” Phytochemistry 123, 4–15 (2016). https://doi.org/10.1016/j.phytochem.2016.01.002

    Article  Google Scholar 

  60. H. Li, S. E. Smith, R. E. Holloway, Y. Zhu, and F. A. Smith, “Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses,” New Phytol. 172 (3), 536–543 (2006). https://doi.org/10.1111/j.1469-8137.2006.01846.x

    Article  Google Scholar 

  61. H. Li, H. Wang, J. Zhao, L. Zhang, Y. Li, H. Wang, H. Teng, Z. Yuan, and Z. Yuan, “Physio-biochemical and transcriptomic features of arbuscular mycorrhizal fungi relieving cadmium stress in wheat,” Antioxidants 11, 239012 (2022). https://doi.org/10.3390/antiox11122390

    Article  Google Scholar 

  62. M. Li, H. Wang, X. Zhao, Z. Lu, X. Sun, and G. Ding, “Role of Suillus placidus in improving the drought tolerance of masson pine (Pinus massoniana Lamb.) seedlings,” Forests 12 (3323), 32 (2021). https://doi.org/10.3390/f12030332

    Article  Google Scholar 

  63. C. Liang, J. P. Schimel, and J. D. Jastrow, “The importance of anabolism in microbial control over soil carbon storage,” Nat. Microbiol. 2, 171058 (2017). https://doi.org/10.1038/nmicrobiol.2017.105

    Article  Google Scholar 

  64. N. Lu, M. Yu, M. Cui, Z. Luo, Y. Feng, S. Cao, Y. Sun, and Y. Li, “Effects of different ectomycorrhizal fungal inoculates on the growth of Pinus tabulaeformis seedlings under greenhouse conditions,” Forests 7, 316 (2016). https://doi.org/10.3390/f7120316

    Article  Google Scholar 

  65. L. H. Luginbuehl, G. N. Menard, S. Kurup, H. Van Erp, G. V. Radhakrishnan, A. Breakspear, G. E. D. Oldroyd, and P. J. Eastmond, “Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant,” Science 356 (6343), 1175–1178 (2017). https://doi.org/10.1126/science.aan0081

    Article  Google Scholar 

  66. M. I. Makarov, “The role of Mycorrhiza in transformation of nitrogen compounds in soil and nitrogen nutrition of plants: a review,” Eurasian Soil Sci. 52 (2), 193–205 (2019). https://doi.org/10.1134/S1064229319020108

    Article  Google Scholar 

  67. A. R. Milbrandt, D. M. Heimiller, A. D. Perry, and C. B. Field, “Renewable energy potential on marginal lands in the United States,” Renewable Sustainable Energy Rev. 29, 473–481 (2014). https://doi.org/10.1016/j.rser.2013.08.079

    Article  Google Scholar 

  68. E. K. Morris, D. J. P. Morris, S. Voget, S. Gleber, M. Bigalke, W. Wilcke, and M. C. Rillig, “Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi,” ISME J. 13 (7), 1639–1646 (2019). https://doi.org/10.1038/s41396-019-0369-0

    Article  Google Scholar 

  69. M. Op De Beeck, C. Troein, C. Peterson, P. Persson, and A. Tunlid, “Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus,” New Phytol. 218 (1), 335–343 (2018). https://doi.org/10.1111/nph.14971

    Article  Google Scholar 

  70. M. Parihar, A. Rakshit, V. S. Meena, V. K. Gupta, K. Rana, M. Choudhary, G. Tiwari, P. K. Mishra, A. Pattanayak, and J. K. Bisht, “The potential of arbuscular mycorrhizal fungi in C cycling: a review,” Arch. Microbiol. 202 (7), 1581–1596 (2020). https://doi.org/10.1007/s00203-020-01915-x

    Article  Google Scholar 

  71. E. Pellegrino, S. Bedini, L. Avio, E. Bonari, and M. Giovannetti, “Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil,” Soil Biol. Biochem. 43 (2), 367–376 (2011). https://doi.org/10.1016/j.soilbio.2010.11.002

    Article  Google Scholar 

  72. L. A. Phillips, V. Ward, and M. D. Jones, “Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests,” ISME J. 8 (3), 699–713 (2014). https://doi.org/10.1038/ismej.2013.195

    Article  Google Scholar 

  73. S. Piao, C. Yue, J. Ding, and Z. Guo, “Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy,” Sci. China Earth Sci. 65 (6), 1178–1186 (2022). https://doi.org/10.1007/s11430-022-9926-6

    Article  Google Scholar 

  74. C. Potter, S. Klooster, A. Huete, and V. Genovese, “Terrestrial carbon sinks for the United States predicted from MODIS satellite data and ecosystem modeling,” Earth Interact. 11 (13), 1–21 (2007). https://doi.org/10.1175/EI228.1

    Article  Google Scholar 

  75. J. Qi and D. Yin, “Effects of Suillus luteus on the growth, photosynthesis, stomata, and root system of Pinus tabulaeformis under drought stress,” J. Plant Growth Regul., (2022). https://doi.org/10.1007/s00344-022-10809-9

  76. M. Qin, Q. Zhang, J. Pan, S. Jiang, Y. Liu, A. Bahadur, Z. Peng, Y. Yang, and H. Feng, “Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass,” Eur. J. Soil Sci. 71 (1), 84–92 (2020). https://doi.org/10.1111/ejss.12815

    Article  Google Scholar 

  77. E. R. Brzostek, D. Dragoni, Z. A. Brown, and R. P. Phillips, “Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest,” New Phytol. 206 (4), 1274–1282 (2015). https://doi.org/10.1111/nph.13303

    Article  Google Scholar 

  78. D. P. Rasse, C. Rumpel, and M. Dignac, “Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation,” Plant Soil 269 (1/2), 341–356 (2005). https://doi.org/10.1007/s11104-004-0907-y

    Article  Google Scholar 

  79. M. K. Rich, N. Vigneron, C. Libourel, J. Keller, L. Xue, M. Hajheidari, G. V. Radhakrishnan, A. Le Ru, S. I. Diop, and G. Potente, “Lipid exchanges drove the evolution of mutualism during plant terrestrialization,” Science 372 (6544), 864 (2021). https://doi.org/10.1126/science.abg0929

    Article  Google Scholar 

  80. R. Agnihotri, M. P. Sharma, A. Prakash, A. Ramesh, S. Bhattacharjya, A. K. Patra, M. C. Manna, I. Kurganova, and Y. Kuzyakov, “Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: review of mechanisms and controls,” Sci. Total Environ. 806 (P2), 150571 (2022). https://doi.org/10.1016/j.scitotenv.2021.150571

    Article  Google Scholar 

  81. M. C. Rillig, C. A. Aguilar-Trigueros, I. C. Anderson, J. Antonovics, M. Ballhausen, J. Bergmann, M. Bielcik, V. B. Chaudhary, C. Deveautour, and L. Gruenfeld, “Myristate and the ecology of AM fungi: significance, opportunities, applications and challenges,” New Phytol. 227 (6SI), 1610–1614 (2020). https://doi.org/1610. https://doi.org/10.1111/nph.16527

    Article  Google Scholar 

  82. M. C. Rillig, S. F. Wright, K. A. Nichols, W. F. Schmidt, and M. S. Torn, “Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils,” Plant Soil 233 (2), 15–24 (2001). https://doi.org/10.1007/s11104-005-3701-6

    Article  Google Scholar 

  83. F. Rineau, D. Roth, F. Shah, M. Smits, T. Johansson, B. Canback, P. B. Olsen, P. Persson, M. N. Grell, and E. Lindquist, “The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry,” Environ. Microbiol. 14 (6), 1477–1487 (2012). https://doi.org/10.1111/j.1462-2920.2012.02736.x

    Article  Google Scholar 

  84. D. Robinson, “Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics,” Proc. R. Soc. B 274 (1626), 2753–2759 (2007). https://doi.org/10.1098/rspb.2007.1012

    Article  Google Scholar 

  85. R. Roth and U. Paszkowski, “Plant carbon nourishment of arbuscular mycorrhizal fungi,” Curr. Opin. Plant Biol. 39, 50–56 (2017). https://doi.org/10.1016/j.pbi.2017.05.008

    Article  Google Scholar 

  86. J. M. Ruiz-Lozano, C. Collados, J. M. Barea, and R. Azcón, “Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants,” New Phytol. 151 (2), 493–502 (2001). https://doi.org/10.1046/j.0028-646x.2001.00196.x

    Article  Google Scholar 

  87. M. Ruiz-Sánchez, R. Aroca, Y. Muñoz, R. Polón, and J. M. Ruiz-Lozano, “The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress,” J. Plant Physiol. 167 (11), 862–869 (2010). https://doi.org/10.1016/j.jplph.2010.01.018

    Article  Google Scholar 

  88. I. A. Salmeron-Santiago, M. Martinez-Trujillo, J. J. Valdez-Alarcon, M. E. Pedraza-Santos, G. Santoyo, M. J. Pozo, and A. T. Chavez-Barcenas, “An updated review on the modulation of carbon partitioning and allocation in arbuscular mycorrhizal plants,” Microorganisms 10, 751 (2022). https://doi.org/10.3390/microorganisms10010075

    Article  Google Scholar 

  89. T. C. Sarker, M. Zotti, Y. Fang, F. Giannino, S. Mazzoleni, G. Bonanomi, Y. Cai, and S. X. Chang, “Soil aggregation in relation to organic amendment: a synthesis,” J. Soil Sci. Plant Nutr. 22 (2), 2481–2502 (2022). https://doi.org/10.1007/s42729-022-00822-y

    Article  Google Scholar 

  90. F. V. Schindler, E. J. Mercer, and J. A. Rice, “Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content,” Soil Biol. Biochem. 39 (1), 320–329 (2006). https://doi.org/10.1016/j.soilbio.2006.08.017

    Article  Google Scholar 

  91. C. A. Sierra, S. E. Crow, M. Heimann, H. Metzler, and E. Schulze, “The climate benefit of carbon sequestration,” Biogeosciences 18 (3), 1029–1048 (2021). https://doi.org/10.5194/bg-18-1029-2021

    Article  Google Scholar 

  92. A. K. Singh, A. Rai, V. Pandey, and N. Singh, “Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics,” J. Environ. Manage. 192, 142–149 (2017). https://doi.org/10.1016/j.jenvman.2017.01.041

    Article  Google Scholar 

  93. M. L. Smith, J. N. Bruhn, and J. B. Anderson, “The fungus Armillaria bulbosa is among the largest and oldest living organisms,” Nature 356 (6368), 428 (1992). https://doi.org/10.1038/356428a0

    Article  Google Scholar 

  94. S. E. Smith and R. David, “Growth and carbon economy of arbuscular mycorrhizal symbionts,” in Mycorrhizal Symbiosis, Ed. by S. E. Smith et al. (Elsevier Ltd, 2008), pp. 117–144. https://doi.org/10.1016/B978-012370526-6.50006-4

  95. N. A. Soudzilovskaia, P. M. van Bodegom, C. Terrer, M. Van’T Zelfde, I. McCallum, M. L. McCormack, J. B. Fisher, M. C. Brundrett, N. C. de Sa, and L. Tedersoo, “Global mycorrhizal plant distribution linked to terrestrial carbon stocks,” Nat. Commun. 10 (5077), (2019). https://doi.org/10.1038/s41467-019-13019-2

  96. N. A. Soudzilovskaia, M. G. A. van der Heijden, J. H. C. Cornelissen, M. I. Makarov, V. G. Onipchenko, M. N. Maslov, A. A. Akhmetzhanova, and P. M. van Bodegom, “Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling,” New Phytol. 208 (1), 280–293 (2015). https://doi.org/10.1111/nph.13447

    Article  Google Scholar 

  97. E. K. Stuart and K. L. Plett, “Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses,” Front. Plant Sci. 10, 1658 (2020). https://doi.org/10.3389/fpls.2019.01658

    Article  Google Scholar 

  98. Y. Sugiura, R. Akiyama, S. Tanaka, K. Yano, H. Kameoka, S. Marui, M. Saito, M. Kawaguchi, K. Akiyama, and K. Saito, “Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi,” Proc. Natl. Acad. Sci. U. S. A. 117 (41), 25779–25788 (2020). https://doi.org/10.1073/pnas.2006948117

    Article  Google Scholar 

  99. S. Sun, Y. Feng, G. Huang, X. Zhao, and F. Song, “Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties,” Environ. Pollut. 314, 120309 (2022). https://doi.org/10.1016/j.envpol.2022.120309

    Article  Google Scholar 

  100. W. Sun, B. Yang, Y. Zhu, H. Wang, G. Qin, and H. Yang, “Ectomycorrhizal fungi enhance the tolerance of phytotoxicity and cadmium accumulation in oak (Quercus acutissima Carruth.) seedlings: modulation of growth properties and the antioxidant defense responses,” Environ. Sci. Pollut. Res. 29 (5), 6526–6537 (2022). https://doi.org/10.1007/s11356-021-16169-3

    Article  Google Scholar 

  101. Y. J. Sun, P. Y. Yu, J. Z. Chen, S. M. Li, and L. J. Jiang, “Effects of slippery jack (Suillus Luteus) on the heavy metal accumulation and soil properties of masson’s pine (Pinus Massoniana Lamb) in a mining area of China,” Appl. Ecol. Environ. Res. 18 (2), 3741–3755 (2020). https://doi.org/10.15666/aeer/1802_37413755

    Article  Google Scholar 

  102. J. M. Talbot, S. D. Allison, and K. K. Treseder, “Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change,” Funct. Ecol. 22 (6), 955–963 (2008). https://doi.org/10.1111/j.1365-2435.2008.01402.x

    Article  Google Scholar 

  103. A. To, J. Joubes, G. Barthole, A. Lecureuil, A. Scagnelli, S. Jasinski, L. Lepiniec, and S. Baud, “WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis,” Plant Cell 24 (12), 5007–5023 (2012). https://doi.org/10.1105/tpc.112.106120

    Article  Google Scholar 

  104. J. Wang, H. Zhang, J. Gao, Y. Zhang, Y. Liu, and M. Tang, “Effects of ectomycorrhizal fungi (Suillus variegatus) on the growth, hydraulic function, and non-structural carbohydrates of Pinus tabulaeformis under drought stress,” BMC Plant Biol. 21, 1711 (2021). https://doi.org/10.1186/s12870-021-02945-3

    Article  Google Scholar 

  105. Q. Wang, D. Mei, J. Chen, Y. Lin, J. Liu, H. Lu, and C. Yan, “Sequestration of heavy metal by glomalin-related soil protein: implication for water quality improvement in mangrove wetlands,” Water Res. 148, 142–152 (2018). https://doi.org/10.1016/j.watres.2018.10.043

    Article  Google Scholar 

  106. M. Welemariam, F. Kebede, B. Bedadi, and E. Birhane, “Effect of community-based soil and water conservation practices on soil glomalin, aggregate size distribution, aggregate stability and aggregate-associated organic carbon in northern highlands of Ethiopia,” Agric. Food Secur. 7 (1), 1–11 (2018). https://doi.org/10.1186/s40066-018-0193-1

    Article  Google Scholar 

  107. Z. Wen, J. Xing, C. Liu, X. Zhu, B. Zhao, J. Dong, T. He, X. Zhao, and L. Hong, “The effects of ectomycorrhizal inoculation on survival and growth of Pinus thunbergii seedlings planted in saline soil,” Symbiosis 86 (1), 71–80 (2022). https://doi.org/10.1007/s13199-021-00825-w

    Article  Google Scholar 

  108. V. Wewer, M. Brands, and P. Doermann, “Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus,” Plant J. 79 (3), 398–412 (2014). https://doi.org/10.1111/tpj.12566

    Article  Google Scholar 

  109. C. Wu, X. Kong, X. He, F. Song, Y. Lin, Y. Jia, A. V. Kurakov, and Z. He, “The biotic and abiotic factors of regulation of arbuscular mycorrhizal fungi activity in litter decomposition: review,” Eurasian Soil Sci. 55, 1446–1459 (2022). https://doi.org/10.1134/S1064229322100155

    Article  Google Scholar 

  110. Y. Xiao, T. Chang, Q. Song, S. Wang, D. Tholen, Y. Wang, C. Xin, G. Zheng, H. Zhao, and X. Zhu, “ePlant for quantitative and predictive plant science research in the big data era—Lay the foundation for the future model guided crop breeding, engineering and agronomy,” Quant. Biol. 5 (3), 260–271 (2017). https://doi.org/10.1007/s40484-017-0110-9

    Article  Google Scholar 

  111. B. Xu, Z. Guo, S. Piao, and J. Fang, “Biomass carbon stocks in China’s forests between 2000 and 2050: A prediction based on forest biomass-age relationships,” Sci. China: Life Sci. 53 (7), 776–783 (2010). https://doi.org/10.1007/s11427-010-4030-4

    Article  Google Scholar 

  112. Y. Xu, Z. Chen, X. Li, J. Tan, F. Liu, and J. Wu, “Mycorrhizal fungi alter root exudation to cultivate a beneficial microbiome for plant growth,” Funct. Ecol. 37 (3), 664–675 (2023). https://doi.org/10.1111/1365-2435.14249

    Article  Google Scholar 

  113. C. Yang, Y. Shi, W. Sun, J. Zhu, C. Ji, Y. Feng, S. Ma, Z. Guo, and J. Fang, “Updated estimation of forest biomass carbon pools in China, 1977–2018,” Biogeosciences 19 (12), 2989–2999 (2022). https://doi.org/10.5194/bg-19-2989-2022

    Article  Google Scholar 

  114. Y. Yang, Y. Shi, W. Sun, J. Chang, J. Zhu, L. Chen, X. Wang, Y. Guo, H. Zhang, and L. Yu, “Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality,” Sci. China: Life Sci. 65 (5), 861–895 (2022). https://doi.org/10.1007/s11427-021-2045-5

    Article  Google Scholar 

  115. D. Yin, S. Halifu, R. Song, J. Qi, X. Deng, and J. Deng, “Effects of an ectomycorrhizal fungus on the growth and physiology of Pinus sylvestris var. mongolica seedlings subjected to saline-alkali stress,” J. For. Res. 31 (3), 781–788 (2020). https://doi.org/10.1007/s11676-019-01007-7

    Article  Google Scholar 

  116. D. R. Zak, P. T. Pellitier, W. A. Argiroff, B. Castillo, T. Y. James, L. E. Nave, C. Averill, K. V. Beidler, J. Bhatnagar, and J. Blesh, “Exploring the role of ectomycorrhizal fungi in soil carbon dynamics,” New Phytol. 223 (1), 33–39 (2019). https://doi.org/10.1111/nph.15679

    Article  Google Scholar 

  117. H. Zhang, Z. Liu, H. Chen, and M. Tang, “Symbiosis of arbuscular mycorrhizal fungi and Robinia pseudoacacia L. improves root tensile strength and soil aggregate stability,” PLoS One 11, e01533784 (2016). https://doi.org/10.1371/journal.pone.0153378

    Article  Google Scholar 

  118. Y. Zhou, Y. Liu, Y. Wang, and C. Yang, “Claroideoglomus etunicatum improved the growth and saline- alkaline tolerance of Potentilla anserina by altering physiological and biochemical properties,” Biocell 46 (8), 1967–1978 (2022). https://doi.org/10.32604/biocell.2022.019304

    Article  Google Scholar 

  119. X. Zhu, S. P. Long, and D. R. Ort, “What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?,” Curr. Opin. Biotech. 19 (2), 153–159 (2008). https://doi.org/10.1016/j.copbio.2008.02.004

    Article  Google Scholar 

  120. X. C. Zhu, F. B. Song, S. Q. Liu, T. D. Liu, and X. Zhou, “Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress,” Plant Soil Environ. 58 (4), 186–191 (2012). https://doi.org/10.17221/23/2011-PSE

    Article  Google Scholar 

  121. Y. Zhu and R. M. Miller, “Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems.,” Trends Plant Sci. 8 (9), 407–409 (2003). https://doi.org/10.1016/S1360-1385(03)00184-5

    Article  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China, grant number 31971527. The authors are grateful for the financial support of Ministry of Science and Technology High-end Foreign Experts Introduction Plan (G2022011022L), and Heilongjiang Provincial Key Research and Development Plan Guidance Projects (GZ20210009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Song.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue He, Wang, W., Wang, X. et al. The Potential of Mycorrhizal Fungi to Increase Terrestrial Ecosystem Carbon Sink: a Review. Eurasian Soil Sc. 56, 1724–1738 (2023). https://doi.org/10.1134/S1064229323601178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601178

Keywords:

Navigation