Skip to main content
Log in

Distribution of Total Nitrogen in Soils of the Tropical Highlands of Cameroon

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Understanding the factors controlling soil total N (TN) is helpful in simulating N cycling at local and regional scales. This study was conducted with the aim to; (i) understand the distribution of TN in specific soil horizons (A and B horizons) of three reference soil groups: Acrisols, Cambisols and Ferralsols, common in humid tropical environments, and (ii) to identify factors controlling TN variations among the various soil groups. Twenty-eight Acrisols, 21 Cambisols and 8 Ferralsols profiles spanning a wide range of precipitation gradients, vegetation type/land use and parent materials, from the Northwestern Highlands (NWH) of Cameroon were considered. Soil properties were analyzed following standard procedures. TN had very high coefficients of variation (>35%) in all the reference soil groups (RSGs), with highest mean TN (0.31 ± 0.03%) observed in the A horizons of Acrisols and the lowest (0.05 ± 0.01%) in B horizons of Ferralsols. Variations in TN content were significantly (p < 0.05) influenced by parent material, land use type, precipitation and slope gradient. In surface (A) horizons of all the RSGs, TN correlated positively and significantly with clay (p < 0.05), silt (p < 0.01) and soil organic carbon (SOC) (p < 0.01), and negatively with sand (p < 0.01). This observation was slightly different in subsurface (B) horizons. This study provides data which contributes to a better understanding of soil fertility in tropical highlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. K. A. Adeboye, E. N. O. Iwuafor, and J. O. Agbenin, “The effects of crop rotation and nitrogen fertilization on soil chemical and microbial properties in a Guinea Savanna Alfisol of Nigeria,” Plant Soil 281 (1), 97–107 (2006). https://doi.org/10.1007/s11104-005-3828-5

    Article  Google Scholar 

  2. A. Adugna and A. Abegaz, “Effects of soil depth on the dynamics of selected soil properties among the highlands resources of Northeast Wollega, Ethiopia: are these sign of degradation?,” Solid Earth Discuss. 7 (3), 2011–2035 (2015). https://doi.org/10.5194/sed-7-2011-2015

    Article  Google Scholar 

  3. W. Amelung, W. Zech, X. Zhang, R. F. Follett, H. Tiessen, E. Knox, and K. W. Flach, “Carbon, nitrogen, and sulfur pools in particle-size fractions as influenced by climate,” Soil Sci. Soc. Am. J. 62 (1), 172–181 (1998). https://doi.org/10.2136/sssaj1998.03615995006200010023x

    Article  Google Scholar 

  4. M. A. Araujo, Y. L. Zinn, and R. Lal, “Soil parent material, texture and oxide contents have little effect on soil organic carbon retention in tropical highlands,” Geoderma 300, 1–10 (2017). https://doi.org/10.1016/j.geoderma.2017.04.006

    Article  Google Scholar 

  5. E. T. Awah, P. A. Kips, H. MoukouriKuoh, and F. Tchuenteu, “A clino-sequence of red and brown soils on basalt in the Nkambe Area, North-West Cameroon: characterization, classification and agricultural implications,” in Séminaire Régionale sur les Latérites: Sols, Matériaux, Minerais. Editions de l’ORSTOM, Collections Colloques et Séminaires (1987), pp. 173–185.

  6. J. Bai, H. Ouyang, W. Deng, Y. Zhu, X. Zhang, and Q. Wang, “Spatial distribution characteristics of organic Matter and total nitrogen of marsh soils in river marginal wetlands,” Geoderma 124, 181–192 (2005). https://doi.org/10.1016/j.geoderma.2004.04.012

    Article  Google Scholar 

  7. V. A. Barker and G. M. Bryson, “Nitrogen,” in Handbook of Plant Nutrition, Ed. by V. A. Barker and J. D. Pilbeam (CRC Press, Taylor and Francis Group, Boca Raton, 2007), pp. 21–50.

  8. A. H. Bingham and M. F. Cotrufo, “Organic nitrogen storage in mineral soil: implications for policy and management,” Sci. Total Environ. 551, 116–126 (2016). https://doi.org/10.1016/j.scitotenv.2016.02.020

    Article  Google Scholar 

  9. J. M. Bremner, “Organic nitrogen in soils,” in Methods of Soil Analysis, Ed by C. A. Black (American Society of Agronomy, Madison, 1965), pp. 93–149.https://doi.org/10.2134/agronmonogr9.1

  10. K. G. Cassman and D.N. Munns, “Nitrogen mineralization as affected by soil moisture, temperature, and depth,” Soil Sci. Soc. Am. J. 44, 1233–1237 (1980).https://doi.org/10.2136/sssaj1980.03615995004400060020x

    Article  Google Scholar 

  11. W. F. Cong, J. van Ruijven, L. Mommer, G. B. De Deyn, F. Berendse, and E. Hoffland, “Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes,” J. Ecol. 102 (5), 1163–1170 (2014). https://doi.org/10.1111/1365-2745.12280

    Article  Google Scholar 

  12. M. A. Cregger, N. G. McDowell, R. E. Pangle, W. T. Pockman, and A. T. Classen, “The impact of precipitation changes on nitrogen cycling in a semi-arid ecosystem,” Funct. Ecol. 28, 1534–1544 (2014). https://doi.org/10.1111/1365-2435.12282

    Article  Google Scholar 

  13. R. A. Dahlgren, “Soil acidification and nitrogen saturation from weathering of ammonium-bearing rock,” Nature 368, 838–841 (1994). https://doi.org/10.1038/369340c0

    Article  Google Scholar 

  14. A. De Marco, M. F. Fornasier, A. Screpanti, D. Lombardi, and M. Vitale, “Nitrogen budget and statistical entropy analysis of the Tiber River catchment, a highly anthropized environment,” Soil Syst. 6 (17), 1–19 (2022). https://doi.org/10.3390/soilsystems6010017

    Article  Google Scholar 

  15. J. Dessureault-Rompré, B. J. Zebarth, D. L. Burton, and C. A. Gran, “Depth distribution of mineralizable nitrogen pools in contrasting soils in a semi-arid climate,” Can. J. Soil Sci. 96 (1), 1–11 (2016). https://doi.org/10.1139/cjss-2015-0048

    Article  Google Scholar 

  16. FAO-UNDP/IRAF Ekona, Laboratory Manual Soil and Plant Laboratory Ekona, Technical Report No. 10, FAO-UNDP Soil Resources Project and Soil Science Department IRAF-ONAREST, Ekona (Cameroon, 1979).

  17. J. F. Griffiths, “Climates of Africa,” in World Survey of Climatology (Elsevier, Amsterdam, 1972), Vol. 10. https://doi.org/10.1007/1-4020-3266-8_4.

  18. C. Gu and W. J. Riley, “Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling—a modeling analysis,” J. Contam. Hydrol. 112 (1–4), 141–154 (2010). https://doi.org/10.1016/j.jconhyd.2009.12.003

    Article  Google Scholar 

  19. X. Han, C. Hu, Y. Chen, Y. Qiao, D. Liu, J. Fan, S. L. Li, and Z. Zhang, “Soil nitrogen sequestration in a long-term fertilizer experiment in central China,” Span. J. Agric. Res. 18 (1), 1102 (2020). https://doi.org/10.5424/sjar/2020181-15691

    Article  Google Scholar 

  20. L. J. T. Hess, E. L. S. Hinckley, G. P. Robertson, and P. A. Matson, “Rainfall intensification increases nitrate leaching from tilled but not no-till cropping systems in the U.S. Midwest,” Agric., Ecosyst. Environ. 209 (1), 106747 (2020). https://doi.org/10.1016/j.agee.2019.106747

    Article  Google Scholar 

  21. J. M. Holloway and R. A. Dahlgren, “Nitrogen in rock: occurrences and biogeochemical implications,” Global Biogeochem. Cycles 16 (4), 1118–1135 (2002). https://doi.org/10.1029/2002GB001862

    Article  Google Scholar 

  22. B. Z. Houlton, S. L. Morford, and R. A. Dahlgren, “Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment,” Science 360, 58–62 (2018). https://doi.org/10.1126/science.aan4399

    Article  Google Scholar 

  23. IUSS Working Group WRB, “World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps Update,” World Soil Resources Reports No. 106, (FAO, Rome, 2015).

    Google Scholar 

  24. A. Jilling, M. Keiluweit, A. R. Contosta, S. Frey, J. Schimel, J. Schnecker, R. G. Smith, L. Tiemann, and A. S. Grandy, “Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes,” Biogeochemistry 139 (2), 103–122 (2018). https://doi.org/10.1007/s10533-018-0459-5

    Article  Google Scholar 

  25. M. M. Kresović and V. Ličina, “Estimation of soil nitrogen availability,” J. Agric. Sci. Belgrade 48 (1), 21–38 (2003).

    Article  Google Scholar 

  26. I. Y. Kudrevatykh, K. V. Ivashchenko, N. D. Ananyeva, and E. A. Ivanishcheva, “Atmospheric nitrogen deposition and the properties of soils in forests of Vologda region,” Eurasian Soil Sci. 51, 153–162 (2018). https://doi.org/10.1134/S1064229318020060

    Article  Google Scholar 

  27. S. J. Leghari, N. A. Wahocho, G. M. Laghari, A. H. Laghari, G. M. Bhabhan, K. H. Talpur, T. A. Bhutto, S. A. Wahocho, and A. A. Lashari, “Role of nitrogen for plant growth and development: a review,” Adv. Environ. Biol. 10, 209–218 (2016). https://link.gale.com/apps/doc/A472372583/AONE?u= anon~af25c16b&sid=googleScholar&xid=f06c6c1b.

    Google Scholar 

  28. J. Lehmann, J. Lilienfein, K. Rebel, S. do Carmo Lima, and W. Wilcke, “Subsoil retention of organic and inorganic nitrogen in a Brazilian savanna Oxisol,” Soil Use Manage. 20, 163–172 (2004). https://doi.org/10.1111/j.1475-2743.2004.tb00352.x

    Article  Google Scholar 

  29. S. Liu, T. Qin, B. Dong, X. Shi, Z. Lv, and G. Zhang, “The influence of climate, soil properties and vegetation on soil nitrogen in sloping farmland,” Sustainability 13, 1480 (2021). https://doi.org/10.3390/su13031480

    Article  Google Scholar 

  30. M. I. Makarov, “The role of mycorrhiza in transformation of nitrogen compounds in soil and nitrogen nutrition of plants: a review,” Eurasian Soil Sci. 52, 193–205 (2019). https://doi.org/10.1134/S1064229319020108

    Article  Google Scholar 

  31. M. Mazzoncini, T. B. Sapkota, P. Barberi, D. Antichi, and R. Risalti, “Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content,” Soil Tillage Res. 114 (2), 165–174 (2011). https://doi.org/10.1016/j.still.2011.05.001

    Article  Google Scholar 

  32. “Microsoft office Excel for windows,” version 2016 (Microsoft Corporation, 2016).

  33. S. L. Morford, B. Z. Houlton, and R. A. Dahlgren, “Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock,” Nature 477, 78–81 (2011). https://doi.org/10.1038/nature10415

    Article  Google Scholar 

  34. M. A. Nearing, V. Jetten, C. Baffaut, O. Cerdan, A. Couturier, M. Hernandez, Y. Le Bissonnais, M. H. Nichols, J. P. Nunes, C. S. Renschler, V. Souchère, and K. van Oost, “Modeling response of soil erosion and runoff to changes in precipitation and cover,” Catena 61 (2/3), 131–154 (2005). https://doi.org/10.1016/j.catena.2005.03.007

    Article  Google Scholar 

  35. R. Ngoufo, “The Bamboutos Mountains: environment and rural land use in West Cameroon,” Mt. Res. Dev. 12 (4), 349–356 (1992). https://doi.org/10.2307/3673685

    Article  Google Scholar 

  36. R. Nieder, K. B. Dinesh, and H. W. Scherer, “Fixation and defixation of ammonium in soils: a review,” Biol. Fertil. Soils 47, 1–14 (2011). https://doi.org/10.1007/s00374-010-0506-4

    Article  Google Scholar 

  37. A. B. Omay, C. W. Rice, L. D. Maddux, and W. B. Gordon, “Changes in soil microbial and chemical properties under long-term crop rotation and fertilization,” Soil Sci. Soc. Am. J. 61 (6), 1672–1678 (1997). https://doi.org/10.2136/sssaj1997.03615995006100060019x

    Article  Google Scholar 

  38. M. C. Peel, B. L. Finlayson, and T. A. McMahon, “Updated world map of the Köppen-Geiger climate classification,” Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007). https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  39. A. S. Popova, N. Tokuchi, N. Ohte, M. U. Ueda, K. Osaka, T. C. Maximov, and A. Sugimoto, “Nitrogen availability in the taiga forest ecosystem of northeastern Siberia,” Soil Sci. Plant Nutr. 59 (3), 427–441 (2013). https://doi.org/10.1080/00380768.2013.772495

    Article  Google Scholar 

  40. V. Rasiah, “Comparison of pedotransfer functions to predict nitrogen-mineralization parameters of one- and two-pool models,” Commun. Soil Sci. Plant Anal. 26 (11/12), 1873–1884 (1995). https://doi.org/10.1080/00103629509369414

    Article  Google Scholar 

  41. V. Rasiah and J. D. Armour, “Nitrate accumulation under cropping in the ferralsols of far north Queensland wet tropics,” Aust. J. Soil Res. 39, 329–341 (2001). https://doi.org/10.1071/SR99133

    Article  Google Scholar 

  42. R. N. Roy, A. Finck, G. J. Blair, and H. L. S. Tandon, “Plant nutrition for food security. A guide for integrated nutrient management,” in FAO Fertilizer and Plant Nutrition Bulletin (FAO, Rome, 2006).

    Google Scholar 

  43. S. Sano, J. Yanai, and T. Kosaki, “Evaluation of soil nitrogen status in Japanese agricultural lands with reference to land use and soil types,” Soil Sci. Plant Nutr. 50 (4), 501–510 (2004). https://doi.org/10.1080/00380768.2004.10408506

    Article  Google Scholar 

  44. O. Schreiner and B. E. Brown, “Soil nitrogen,” in Soils and Men, Yearbook of Agriculture, Ed. by United States Department of Agriculture (United States Government Printing Office, Washington, D.C., 1938), pp. 361–376.

  45. E. A. G. Schuur, “Nitrogen from the deep,” Nature 477, 39–40 (2011). https://doi.org/10.1038/477039a

    Article  Google Scholar 

  46. E. V. Shamrikova, S. V. Deneva, O. S. Kubik, and A. N. Panjukov, “Nitrogen compounds in the soil of the continental margins of the European Russian Arctic,” Eurasian Soil Sci. 53, 870–881 (2020). https://doi.org/10.1134/S1064229320070133

    Article  Google Scholar 

  47. M. Shibata, S. Sugihara, A. D. Mvondo-Ze, S. Araki, and S. Funakawa, “Nitrogen flux patterns through Oxisols and Ultisols in tropical forests of Cameroon, Central Africa,” Soil Sci. Plant Nutr. 63 (3), 306–317 (2017). https://doi.org/10.1080/00380768.2017.1341285

    Article  Google Scholar 

  48. B. Singh and D. G. Schulze, “Soil minerals and plant nutrition,” Nature Educ. Knowl. 6 (1), 1–10 (2015).

    Google Scholar 

  49. Soil Survey Staff, Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys (U.S. Dep. Agr., Washington D.C., 1975), Handb. No. 436.

  50. A. V. Spain, “Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils,” Soil Res. 28 (6), 825–839 (1990). https://doi.org/10.1071/SR9900825

    Article  Google Scholar 

  51. SPSS Inc., SPSS Statistics for Windows, Version 17.0 (IBM, Chicago, 2008).

    Google Scholar 

  52. C. Steiner, B. Glaser, W. G. Teixeira, J. Lehmann, W. E. H. Blum, and W. Zech, “Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal,” J. Plant Nutr. Soil Sci. 171, 893–899 (2008). https://doi.org/10.1002/jpln.200625199

    Article  Google Scholar 

  53. F. J. Stevenson, “Origin and distribution of nitrogen in the soil,” in Nitrogen in Agricultural Soils, Ed. by F. J. Stevenson (American Society of Agronomy, Madison, 1982a), pp. 1–42. https://doi.org/10.2134/agronmonogr22.c1

  54. F. J. Stevenson, “Organic forms of soil nitrogen,” in Nitrogen in Agricultural Soils, Ed. by F. J. Stevenson (American Society of Agronomy, Madison, 1982b), pp. 67–122. https://doi.org/10.2134/agronmonogr22.c3

  55. F. J. Stevenson and M. A. Cole, Cycles of Soils: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients (John Wiley & Sons, 1999).

    Google Scholar 

  56. S. M. Strathouse, G. Sposito, P. J. Sullivan, and L. J. Lund, “Geologic nitrogen, a potential geochemical hazard in the San Joaquin Valley, California,” J. Environ. Qual. 9, 54–60 (1980). https://doi.org/10.2134/jeq1980.00472425000900010014x

    Article  Google Scholar 

  57. B. Takoutsing, J. C. Weber, J. A. R. Martin, K. Shepherd, E. Aynekulu, and A. Sila, “An assessment of the variation of soil properties with landscape attributes in the highlands of Cameroon,” Land Degrad. Dev. 29 (8), 2496–2505 (2018). https://doi.org/10.1002/ldr.3075

    Article  Google Scholar 

  58. V. A. Tellen and B. P. K. Yerima, “Effects of land use change on soil physicochemical properties in selected areas in the North West Region of Cameroon,” Environ. Syst. Res. 7 (1), 1–29 (2018). https://doi.org/10.1186/s40068-018-0106-0

    Article  Google Scholar 

  59. J. W. Van Groenigen, C. van Kessel, B. A. Hungate, O. Oenema, D. S. Powlson, and K. J. van Groenigen, “Sequestering soil organic carbon: a nitrogen dilemma,” Environ. Sci. Technol. 51, 4738–4739 (2017). https://doi.org/10.1021/acs.est.7b01427

    Article  Google Scholar 

  60. M. T. Vasbieva, “Effect of long-term application of organic and mineral fertilizers on the organic carbon content and nitrogen regime of soddy-podzolic soil,” Eurasian Soil Sci. 52, 1422–1428 (2019). https://doi.org/10.1134/S1064229319110139

    Article  Google Scholar 

  61. S. R. Weintraub, P. G. Taylor, S. Porder, C. C. Cleveland, G. P. Asner, and A. R. Townsend, “Topographic controls on soil nitrogen availability in a lowland tropical forest,” Ecology 96 (6), 1561–1574 (2015). https://doi.org/10.1890/14-0834

    Article  Google Scholar 

  62. A. L. Wright and F. M. Hons, “Soil carbon and nitrogen storage in aggregates from different tillage and crop regimes,” Soil Sci. Soc. Am. J. 69 (1), 141–147 (2005). https://doi.org/10.2136/sssaj2004.5070

    Article  Google Scholar 

  63. Z. Xue and S. An, “Changes in soil organic carbon and total nitrogen at a small watershed scale as the result of land use conversion on the loess plateau,” Sustainability 10 (12), 4757 (2018). https://doi.org/10.3390/su10124757

    Article  Google Scholar 

  64. B. P. K. Yerima and E. Van Ranst, Major Soil Classification Systems Used in the Tropics: Soils of Cameroon (Trafford Publishing, Canada, 2005).

    Google Scholar 

  65. H. Zheng, Z. Liu, J. Zuo, L. Wang, and X. Nie, “Characteristics of nitrogen loss through surface-subsurface flow on red soil slopes of southeast China,” Eurasian Soil Sci. 50, 1506–1514 (2017). https://doi.org/10.1134/S1064229317130063

    Article  Google Scholar 

  66. Q. Zhong, S. Zhang, H. Chen, T. Li, C. Zhang, X. Xu, Z. Mao, et al., “The influence of climate, topography, parent material and vegetation on soil nitrogen fractions,” Catena 175, 329–338 (2019). https://doi.org/10.1016/j.catena.2018.12.027

    Article  Google Scholar 

  67. W. Zhou, G. Han, M. Liu, and X. Li, “Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand,” PeerJ 7, e7880 (2019). https://doi.org/10.7717/peerj.7880

    Article  Google Scholar 

  68. W. Zhou, G. Han, M. Liu, J. Zeng, B. Liang, J. Liu, and R. Qu, “Determining the distribution and interaction of soil organic carbon, nitrogen, pH and texture in soil profiles: a case study in the Lancangjiang River Basin, Southwest China,” Forests 11 (5), 532 (2020). https://doi.org/10.3390/f11050532

    Article  Google Scholar 

  69. H. Fang, “Effects of soil conservation measures and slope on runoff, soil, TN, and TP losses from cultivated lands in northern China,” Ecol. Indic. 126, 107677 (2021). https://doi.org/10.1016/j.ecolind.2021.107677

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Kome.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kome, G.K., Kips, P.A., Yerima, B.P. et al. Distribution of Total Nitrogen in Soils of the Tropical Highlands of Cameroon. Eurasian Soil Sc. 56, 889–901 (2023). https://doi.org/10.1134/S1064229322602682

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322602682

Keywords:

Navigation