Skip to main content
Log in

Parameters of the Thermal Diffusivity vs. Water Content Function for Mineral Soils of Different Textural Classes

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

This work provides parameters of the soil thermal diffusivity vs. water content function for eight textural classes. The experimental thermal diffusivity vs. water content curves previously obtained for mineral soils of the European Russia were used. In the course of the study, the dataset for 77 undisturbed soil samples was analyzed. This dataset included loose sand, dense sand, sandy loam, light loam, medium loam, heavy loam, light clay, and medium clay. Thermal diffusivity of soil samples measured using the unsteady-state method varied within the dataset from 0.77 × 10–7 to 10.09 × 10–7 m2/s. To parameterize the soil thermal diffusivity vs. water content dependences the grouping method was applied. Soils were grouped according to textural classes using the classification either after Dolgov or after Kachinskii. For each of the chosen textural classes, the parameters of an average thermal diffusivity vs. water content curve were estimated from all the experimental data points for this class by approximating these points with the previously suggested four-parameter function. The approximation accuracy was estimated using Willmott’s index of agreement between the model-predicted curve and the observed values. The greatest value for the index of agreement (0.845) was obtained for the medium clays defined according to Dolgov and the smallest one (0.532) for sandy loams. The index of agreement for the whole dataset was 0.699 when the textural classes were defined according to Dolgov, and 0.688 when they were defined according to Kachinskii. In addition, the parameters of an average general curve for the whole experimental dataset were obtained. The index of agreement between this general curve and observed values was only 0.554, which confirms the efficiency of soil grouping by textural classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. I. Andrianov, “Heat capacity of bound water and heat capacity of soils,” Dokl. Vses. Akad. S-kh. Nauk im. V.I. Lenina, No. 2, 71–74 (1936).

    Google Scholar 

  2. T. A. Arkhangelskaya, “A new empirical formula for estimating soil thermal diffusivity,” in Materials of the Scientific Session on Fundamental Soil Science, November 30–December 2,2004, Moscow, 2004, pp. 45–46.

  3. T. A. Arkhangel’skaya, “Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content,” Eurasian Soil Sci. 42, 162–172 (2009).

    Article  Google Scholar 

  4. T. A. Arhangelskaya, “Thermal diffusivity of gray forest soils in the Vladimir Opolie region,” Eurasian Soil Sci. 37, 285–294 (2004).

    Google Scholar 

  5. T. A. Arkhangel’skaya, M. A. Butylkina, M. A. Mazirov, and M. V. Prokhorov, “Properties and functioning of arable soils of the paleocryogenic soil complex in the Vladimir opolie region,” Eurasian Soil Sci. 40, 237–246 (2007).

    Article  Google Scholar 

  6. T. A. Arkhangel’skaya, A. K. Guber, M. A. Mazirov, and M. V. Prokhorov, “The temperature regime of heterogeneous soilscape in Vladimir Opol’e region,” Eurasian Soil Sci. 38, 734–744 (2005).

    Google Scholar 

  7. T. A. Arkhangel’skaya, K. I. Luk’yashchenko, and P. I. Tikhonravova, “Thermal diffusivity of typical chernozems in the Kamennaya Steppe reserve,” Eurasian Soil Sci. 48, 177–182 (2015).

    Article  Google Scholar 

  8. A. D. Voronin, Fundamentals of Soil Physics (Moscow State Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  9. A. P. Geraizade, “Linear dependence of thermal diffusivity on the mechanical composition of soils,” Pochvovedenie, No. 10, 120–123 (1974).

    Google Scholar 

  10. V. N. Dimo, “Dependence between thermal diffusivity and moisture of soils,” Pochvovedenie, No. 12, 729–734 (1948).

    Google Scholar 

  11. E. A. Dmitriev, “Key factors of the specific heat capacity of the solid soil phase,” Vestn. Mosk. Univ., Ser. 16: Biol., No. 4, 103–111 (1958).

  12. E. A. Dmitriev, “Regularities determining the value and changes in the specific heat capacity of the mineral anhydrous part of soils and rocks,” Vestn. Mosk. Univ., Ser. 16: Biol., No. 3, 79–84 (1959).

  13. Agrophysical Methods of Soil Studies, Ed. by S. I. Dolgov (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  14. N. A. Kachinskii, Mechanical and Microaggregate Compositions of Soil and Their Analysis (Academy of Sciences of USSR, Moscow, 1958) [in Russian].

    Google Scholar 

  15. K. I. Luk’yashchenko, Candidate’s Dissertation in Biology (Moscow, 2012).

  16. K. I. Lukiashchenko and T. A. Arkhangelskaya, “Modeling thermal diffusivity of differently textured soils,” Eurasian Soil Sci. 51, 183–189 (2018).

    Article  Google Scholar 

  17. K. I. Luk’yashchenko, T. A. Arkhangel’skaya, and A. B. Umarova, “Thermal diffusivity of plowed leached meadow-chernozemic soils in the Adygeya Republic,” Eurasian Soil Sci. 45, 404–407 (2012).

    Article  Google Scholar 

  18. S. M. Skuratov, “Heat capacity of bound water,” Kolloidn. Zh. 13 (5), 396 (1951).

    Google Scholar 

  19. P. I. Tikhonravova and A. S. Frid, “Mathematical models of thermal diffusivity in solonetz soils in the Trans-Volga region of Volgograd oblast,” Eurasian Soil Sci. 41, 190–201 (2008).

    Article  Google Scholar 

  20. P. I. Tikhonravova and N. B. Khitrov, “Estimation of thermal diffusivity in Vertisols of the Central Cis-Caucasus region,” Eurasian Soil Sci. 36, 313–322 (2003).

    Google Scholar 

  21. E. V. Shein and L. O. Karpachevskii, Theories and Methods of Soil Physics (Moscow, 2007) [in Russian].

    Google Scholar 

  22. N. H. Abu-Hamdeh, “Thermal properties of soils as affected by density and water content,” Biosyst. Eng. 86 (1), 97–102 (2003).

    Article  Google Scholar 

  23. T. Arkhangelskaya and K. Lukyashchenko, “Estimating soil thermal diffusivity at different water contents from easily available data on soil texture, bulk density, and organic carbon content,” Biosyst. Eng. 168, 83–95 (2018).

    Article  Google Scholar 

  24. D. Barry-Macaulay, A. Bouazza, B. Wang, and R. M. Singh, “Evaluation of soil thermal conductivity models,” Can. Geotech. J. 52 (11), 1892–1900 (2015). https://doi.org/10.1139/cgj-2014-0518

    Article  Google Scholar 

  25. J. Busby, “Thermal conductivity and diffusivity estimations for shallow geothermal systems,” Q. J. Eng. Geol. Hydrogeol. 49 (2), 138–146 (2016).

    Article  Google Scholar 

  26. J. Côte and J.-M. Konrad, “A generalized thermal conductivity model for soils and construction materials,” Can. Geotech. J. 42, 443–458 (2005).

    Article  Google Scholar 

  27. D. A. De Vries, “Thermal properties of soils,” in Physics of Plant Environment, Ed. by W. R. van Wijk (North Holland, Amsterdam, 1963), pp. 210–235.

    Book  Google Scholar 

  28. Z. Gao, B. Tong, R. Horton, A. Mamtimin, Y. Li, and L. Wang, “Determination of desert apparent thermal diffusivity using a conduction-convection algorithm,” J. Geophys. Res.: Atmos. 122, 9569–9578 (2017). .https://doi.org/10.1002/2017JD027290

    Article  Google Scholar 

  29. H. He, M. F. Dyck, R. Horton, K. L. Bristow, J. Lv, and B. Si, “Development and application of the heat pulse method for soil physical measurements,” Rev. Geophys. 56, (2018). https://doi.org/10.1029/2017RG000584

  30. J. Noilhan and S. Planton, “A simple parameterization of land surface processes for meteorological models,” Mon. Weather Rev. 117, 536–549 (1989).

    Article  Google Scholar 

  31. Y. Pachepsky and Y. Park, “Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density,” Soil Sci. Soc. Am. J. 79 (4), 1094–1100 (2015).

    Article  Google Scholar 

  32. Ya. A. Pachepsky and W. J. Rawls, “Accuracy and reliability of pedotransfer functions as affected by grouping soils,” Soil Sci. Soc. Am. J. 63, 1748–1757 (1999).

    Article  Google Scholar 

  33. R. J. Parikh, J. A. Havens, and H. D. Scott, “Thermal diffusivity and conductivity of moist porous media,” Soil Sci. Soc. Am. J. 43, 1050–1052 (1979).

    Article  Google Scholar 

  34. C. D. Peters-Lidard, E. Blackburn, X. Liang, and E. F. Wood, “The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures,” J. Atmos. Sci. 55, 1209–1224 (1998).

    Article  Google Scholar 

  35. M. S. Roxy, V. B. Sumithranand, and G. Renuka, “Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala,” J. Earth Syst. Sci. 119 (4), 507–517 (2010).

    Article  Google Scholar 

  36. M. G. Schaap, F. J. Leij, and M. Th. van Genuchten, “ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions,” J. Hydrol. 251, 163–176 (2001).

    Article  Google Scholar 

  37. J. Simunek, M. Th. van Genuchten, and M. Šejna, “Recent developments and applications of the HYDRUS computer software packages,” Vadoze Zone J., (2016). https://doi.org/10.2136/vzj2016.04.0033

    Google Scholar 

  38. V. R. Tarnawski, T. Momose, and W. H. Leong, “Assessing the impact of quartz content on the prediction of soil thermal conductivity,” Géotechnique 59 (4), 331–338 (2009).

    Article  Google Scholar 

  39. Z. Tian, Y. Lu, R. Horton, and T. Ren, “A simplified de Vries-based model to estimate thermal conductivity of unfrozen and frozen soil,” Eur. J. Soil Sci. 67 (5), 564–572 (2016). https://doi.org/10.1111/ejss.12366

    Article  Google Scholar 

  40. B. Tong, Z. Gao, R. Horton, and L. Wang, “Soil apparent thermal diffusivity estimated by conduction and by conduction-convection heat transfer models,” J. Hydrometeorol. 18, 109–118 (2017). https://doi.org/10.1175/JHM-D-16-0086.1

    Article  Google Scholar 

  41. B. Usowicz and Ł. Usowicz, “Thermal conductivity of soils—comparison of measured results and estimation methods,” in Proceedings of Eurosoil 2004 Congress, September 4–12, 2004 Freiburg,Germany, Abstracts of Papers (Freiburg, 2004). http://www.bodenkunde2.uni-freiburg.de/eurosoil/abstracts/id795_Usowicz_full.pdf.

    Google Scholar 

  42. K. van Looy, J. Bouma, M. Herbst, J. Koestel, B. Minasny, U. Mishra, C. Montzka, A. Nemes, Y. A. Pachepsky, J. Padariam, M. G. Schaap, B. Tóth, A. Verhoef, J. Vanderborght, M. J. van der Ploeg, et al., “Pedotransfer functions in Earth system science: challenges and perspectives,” Rev. Geophys. 55, (2017). https://doi.org/10.1002/2017RG000581

  43. C. J. Willmott, S. M. Robeson, and K. Matsuura, “A refined index of model performance,” Int. J. Climatol. 32, 2088–2094 (2012).

    Article  Google Scholar 

  44. X. Xie, Y. Lu, T. Ren, and R. Horton, “An empirical model for estimating soil thermal diffusivity from texture, bulk density, and degree of saturation,” J. Hydrometeorol. 19, 445–457 (2018).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-04-01298.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Arkhangelskaya.

Additional information

Translated by O. Eremina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhangelskaya, T.A. Parameters of the Thermal Diffusivity vs. Water Content Function for Mineral Soils of Different Textural Classes. Eurasian Soil Sc. 53, 39–49 (2020). https://doi.org/10.1134/S1064229320010032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320010032

Keywords:

Navigation