Skip to main content
Log in

Dynamics of peat plateau near the southern boundary of the East European permafrost zone

  • Genesis and Geography of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Detailed study of a peat plateau near the southern boundary of the East European permafrost zone has been performed. The botanical and palynological compositions of the peat to the depth of 10 m, its radiocarbon dates (the AMS method), and its physical and chemical characteristics have been determined. The accumulation of peat in this area began about 8300 years ago at the end of the Boreal period. In the middle of the Atlantic period, the rate of peat accumulation reached 1.44 mm/yr. During the warming phase in the Middle Subboreal period, the peat plateau was subjected to active thermal erosion; part of the peat was eroded. The processes of thermal erosion are also active at present and destroy the edges of peat mounds. At the same time, the gradual accumulation of peat on the plateau continues. An increase in the degree of peat mineralization is expected upon the establishment of aerobic conditions against the background degradation of the permafrost. Peat plateaus and large peat mounds have been the sinks of atmospheric carbon for a larger part of their history. In this context, we do not expect their significant negative influence on the climate in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atlas of Climate and Hydrology of the Komi Republic, Ed. by A.I. Taskaev (Drofa, Moscow, 1997) [in Russian].

  2. S. V. Vasil’ev, “Rate of peat accumulation in Western Siberia,” in namics of Wetland Ecosystems in Northern Eurasia in the Holocene (Karelian Scientific Center, Russian Academy of Sciences, Petrozavodsk, 2000), pp. 56–59.

    Google Scholar 

  3. GOST (State Standard) 17644-83: Peat. Methods of Sampling and Preparation of Samples for Laboratory Tests (Izd. Standartov, Moscow, 1983) [in Russian].

  4. V. N. Ivanov, A Report on Geological Survey and Mapping (Map Sheets Q-40-XXX, Q-41-XXV; Kos’yu-Kozhimskii District) on a Scale of 1: 200000, (Polyarnouralgeologiya, Vorkuta, 2002) [in Russian].

    Google Scholar 

  5. L. I. Inisheva, K. I. Kobak, and I. E. Turchinovich, “Evolution of the paludification process, and carbon accumulation rate in bog ecosystems of Russia,” Geogr. Nat. Resour. 34, 246–253 (2013).

    Article  Google Scholar 

  6. D. A. Kaverin and A. V. Pastukhov, “Genetic characteristics of barren circles on flat-topped peatlands in the Bolshezemelskaya tundra,” Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk 15 (3), 55–62 (2013).

    Google Scholar 

  7. M. D. Kochanova, E. A. Spiridonova, and A. S. Aleshinskaya, “New software for processing palynological data,” Proceedings of XI All-Russian Palynological Conference “Palynology: Theory and Practice” (Scientific Research Paleontological Inst., Russian Academy of Sciences, Moscow, 2005), pp. 13–14.

    Google Scholar 

  8. S. A. Kutenkov, “Korpi software package for design of stratigraphic diagrams of peat composition,” Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, No. 6, 171–176 (2013).

    Google Scholar 

  9. M. N. Miglovets, N. N. Goncharova, V. V. Shchanov, and M. V. Lukasheva, “Methane emission by large peat mounds in the extremely northern taiga,” International Symposium “Mires of Northern Eurasia: Diversity, Dynamics, and Rational Use,” Abstracts of Papers (Karelian Scientific Center, Russian Academy of Sciences, Petrozavodsk, 2015), p.115.

    Google Scholar 

  10. D. S. Orlov and O. N. Biryukova, “System of indices of the humus state of soils,” in {Analysis of Soil Organic Matter} (Rossel’kozakademiya, Moscow, 2005), pp. 6–17.

    Google Scholar 

  11. A. V. Pastukhov and D. A. Kaverin, “Soil carbon pools in tundra and taiga ecosystems of northeastern Europe,” Eurasian Soil Sci. 46, 958–967 (2013).

    Article  Google Scholar 

  12. “Explanatory note to map sheet Q-41 (Vorkuta),” in State Soil Map of Russia, Scale 1: 1000000 (Syktyvkar, 2011) [in Russian].

  13. E. V. Shamrikova, Acidity of Soils in Taiga and Tundra Zones in the Northeast of European Russia (Nauka, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  14. A. P. Shennikov, Introduction to Geobotany (Leningrad State Univ., Leningrad, 1964) [in Russian].

    Google Scholar 

  15. C. Biasi, S. Jokinen, M. E. Marushchak, K. Hämäläinen, T. Trubnikova, M. Oinonen, and P. Martikainen, “Microbial respiration in arctic upland and peat soils as a source of atmospheric carbon dioxide,” Ecosystems 17, 112–126 (2014). doi 10.1007/s10021-013-9710-z

    Article  Google Scholar 

  16. F. Brock, T. Higham, P. Ditchfield, and C. Bronk Ramsey, “Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU),” Radiocarbon 52 (1), 103–112 (2010).

    Article  Google Scholar 

  17. E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature 440, 165–173 (2006). doi 10.1038/nature04514

    Article  Google Scholar 

  18. E. Dorrepaal, S. Toet, R. S. P. van Logtestijn, E. Swart, M. J. van de Weg, T. V. Callaghan, and R. Aerts, “Carbon respiration from subsurface peat accelerated by climate warming in the subarctic,” Nature 460, 616–619 (2009). doi 10.1038/nature08216

    Article  Google Scholar 

  19. G. Hugelius, J. Routh, P. Kuhry, and P. Crill, “Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain,” J. Geophys. Res.: Biogeosci. 117, G02030 (2012). doi 10.1029/2011JG001873

    Article  Google Scholar 

  20. G. Hugelius, T. Virtanen, D. Kaverin, A. Pastukhov, F. Rivkin, S. Marchenko, V. Romanovsky, and P. Kuhry, “High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic,” J. Geophys. Res.: Biogeosci. 116, G03024 (2011). doi 10.1029/2010JG001606

    Article  Google Scholar 

  21. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2014).

  22. M. E. Marushchak, A. Pitkamaki, H. Koponen, C. Biasi, M. Seppälä, and P. J. Martikainen, “Hot spots for nitrous oxide emissions found in different types of permafrost peatlands,” Global Change Biol. 17, 2601–2614 (2011). doi 10.1111/j.1365-2486.2011.02442.x

    Article  Google Scholar 

  23. A. Morgenstern, M. Ulrich, F. Günther, S. Roessler, I. V. Fedorova, N. A. Rudaya, S. Wetterich, J. Boike, and L. Schirrmeister, “Evolution of thermokarst in East Siberian ice-rich permafrost: a case study,” Geomorphology 201, 363–379 (2013). doi 10.1016/j.geomorph. 2013.07.011

    Article  Google Scholar 

  24. P. Oksanen and M. Väliranta, “Palsa mires in changing climate with English abstract and figure captions,” Mires Peat 57, 33–43 (2006).

    Google Scholar 

  25. J. A. Pedersen, M. A. Simpson, J. G. Bockheim, and K. Kumar, “Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy,” Org. Geochem. 42, 947–954 (2011). doi 10.1016/j.orggeochem. 2011.04.003

    Article  Google Scholar 

  26. M. E. Repo, S. Susiluoto, S. E. Lind, S. Jokinen, V. Elsakov, C. Biasi, T. Virtanen, and P. J. Martikainen, “Large N2O emissions from cryoturbated peat soil in tundra,” Nat. Geosci. 2, 189–192 (2009). doi 10.1038/ngeo434

    Article  Google Scholar 

  27. V. E. Romanovsky, D. S. Drozdov, N. G. Oberman, G. V. Malkova, A. L. Kholodov, S. S. Marchenko, N. G. Moskalenko, D. O. Sergeev, N. G. Ukraintseva, A. A. Abramov, D. A. Gilichinsky, and A. A. Vasiliev, “Thermal state of permafrost in Russia,” Permafrost Periglacial Process 21, 136–155 (2010). doi 10.1002/ ppp.683

    Article  Google Scholar 

  28. T. Ronkainen, M. Väliranta, E. McClymont, C. Biasi, S. Salonen, S. Fontana, and E.-S. Tuittila, “A combined biogeochemical and palaeobotanical approach to study permafrost environments and past dynamics,” J. Quat. Sci. 30, 189–200 (2015). doi 10.1002/jqs.2763

    Article  Google Scholar 

  29. J. Routh, G. Hugelius, P. Kuhry, et al., “Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic,” Chem. Geol. 368, 104–117 (2014). doi 10.1016/j.chemgeo.2013.12.022

    Article  Google Scholar 

  30. A. B. K. Sannel and P. Kuhry, “Peat growth and decay dynamics in sub-Arctic peat plateaus, west central Canada,” Boreas 38, 13–24 (2009). doi 10.1111/j.1502-3885.2008.00048.x

    Article  Google Scholar 

  31. E. A. G. Schuur, J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field, S. V. Goryachkin, S. Hagemann, P. Kuhry, P. M. Lafleur, H. Lee, G. Mazhitova, F. E. Nelson, A. Rinke, V. E. Romanovsky, N. Shiklomanov, et al., “Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle,” BioScience 58 (8), 701–714 (2008). doi 10.1641/B580807

    Article  Google Scholar 

  32. M. Seppälä, “Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics,” Quat. Res. 75, 366–370 (2011). doi 10.1016/j.yqres.2010.09.007

    Article  Google Scholar 

  33. C. Tarnocai, J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycles 23, GB2023 (2009). doi 10.1029/2008GB003327

    Article  Google Scholar 

  34. A. White, M. G. R. Cannell, and A. D. Friend, “The high-latitude terrestrial carbon sink: a model analysis,” Global Change Biol. 6, 227–245 (2000). doi 10.1046/ j.1365-2486.2000.00302.x

    Article  Google Scholar 

  35. S. C. Zoltai, “Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years BP,” Géogr. Phys. Quat. 49, 45–54 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pastukhov.

Additional information

Original Russian Text © A.V. Pastukhov, T.I. Marchenko-Vagapova, D.A. Kaverin, S.P. Kulizhskii, O.L. Kuznetsov, V.S. Panov, 2017, published in Pochvovedenie, 2017, No. 5, pp. 544–557.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastukhov, A.V., Marchenko-Vagapova, T.I., Kaverin, D.A. et al. Dynamics of peat plateau near the southern boundary of the East European permafrost zone. Eurasian Soil Sc. 50, 526–538 (2017). https://doi.org/10.1134/S1064229317030097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229317030097

Keywords

Navigation