Skip to main content
Log in

Ephemeral Fe(II)/Fe(III) layered double hydroxides in hydromorphic soils: A review

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Ephemeral green rust is formed seasonally in some hydromorphic soils. It consists of Fe(II)/Fe(III) layered double hydroxides with different types of interlayer anions and different oxidation degrees of iron (x). In synthetized stoichiometric green rust, x = 0.25–0.33; in soil fougerite, it may reach 0.50–0.66. The mineral stability is provided by the partial substitution of Mg2+ for Fe2+. The ephemeral properties of the green rust are manifested in the high sensitivity to the varying redox regime in hydromorphic soils. Green rust disappears during oxidation stages, which complicates its diagnostics in soils. For green rust formation, excessively moist mineral soil needs organic matter as a source of energy for the vital activity of iron-reducing bacteria. In a gleyed Cambisol France, where fougerite is formed in the winter, the index of hydrogen partial pressure rH2 is 7.0–8.2, which corresponds to highly reducing conditions; upon the development of oxidation, fougerite is transformed into lepidocrocite. In the mineral siderite horizon of peatbogs in Belarus, where green rust is formed in the summer, rH2 is 11–14, which corresponds to the lower boundary of reducing conditions (rH2 = 10–18); magnetite is formed in these soils in the winter season upon dehydration of the soil mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Vodyanitskii, “Artificial permeable redox barriers for purification of soil and ground water: a review of publications,” Eurasian Soil Sci. 47(10), 1058–1068 (2014).

    Article  Google Scholar 

  2. Role of Supergene Iron Oxides in Geological Processes (Nauka, Moscow, 1975) [in Russian].

  3. D. G. Zavarzina, Candidate’s Dissertation in Geological and Mineralogical Sciences (Moscow, 2001).

    Google Scholar 

  4. F. R. Zaidel’man, Gleyzation and Its Role in Soil Formation (Moscow State University, Moscow, 1998) [in Russian].

    Google Scholar 

  5. F. R. Zaidel’man, “Morphogleygenesis, its visual and analytic diagnostics,” Eurasian Soil Sci. 37(4), 333–340 (2004).

    Google Scholar 

  6. I. S. Kaurichev and D. S. Orlov, Oxidation-Reduction Processes in Their Role in Genesis and Fertility of Soils (Kolos, Moscow, 1982) [in Russian].

    Google Scholar 

  7. V. A. Kovalev, Boggy Mineral-Geochemical Systems (Nauka Tekhnika, Minsk, 1985) [in Russian].

    Google Scholar 

  8. K. I. Lukashev and V. A. Kovalev, “Some features of mineral-geochemical system of iron in modern peatlands,” Dokl. Akad. Nauk SSSR 187(6), 1390–1393 (1969).

    Google Scholar 

  9. The Encyclopedia of Mineralogy, Ed. by K. Frye (Springer-Verlag, London, 1982).

    Google Scholar 

  10. D. E. Pukhov, Candidate’s Dissertation in Biology (Moscow, 2002).

    Google Scholar 

  11. G. Sposito, The Thermodynamics of Soil Solutions (Clarendon Press, Oxford, 1981).

    Google Scholar 

  12. M. Abdelmoula, F. Trolard, G. Bourrie, and J.-M. R. Genin, “Evidence for the Fe(II)-Fe(III) green rust “fougerite” mineral occurrence in a hydromorphic soil and its transformation with depth,” Hyperfine Interact. 12, 235–238 (1998).

    Article  Google Scholar 

  13. B. C. Christiansen, T. Balic-Zunic, P.-O. Petit, C. Frandsen, et al., “Composition and structure of an iron-bearing, layered double hydroxide (LDH) — green rust sodium sulphate,” Geochim. Cosmochim. Acta 73, 3579–3592 (2009).

    Article  Google Scholar 

  14. D. G. Evans and R. C. T. Slade, “Structural aspects of layered double hydroxides,” Struct. Bond. 119, 1–87 (2006).

    Google Scholar 

  15. F. Feder, F. Trolard, G. Klingelhofer, and G. Bourrie, “In situ Mossbauer spectroscopy — evidence for green rust (fougerite) in gleysol and its mineralogical transformation with time and depth,” Geochim. Cosmochim. Acta 69, 4463–4483 (2005).

    Article  Google Scholar 

  16. J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, H. Dong, T. C. Onsolt, N. W. Hinmann, and S. Li, “Biogenic Fe mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium,” Geochim. Cosmochim. Acta 62, 3239–3257 (1998).

    Article  Google Scholar 

  17. E. Fritsch, A. J. Herbillon, N. R. Nascimento, M. Grimaldi, and A. J. Melfi, “From plintic acrisols to plinthosols and gleysols: iron and groundwater dynamics in the tertiary sediments of the upper Amazon basin,” Eur. J. Soil Sci. 58, 989–1006 (2007).

    Article  Google Scholar 

  18. J.-M. R. Genin, G. Bourrie, F. Trolard, M. Abdelmoula, A. Jaffrezic, Ph. Refai, V. Maitre, B. Humbert, and A. Herbillon, “Thermodynamic equilibrium in aqueous suspensions of synthetic and natural Fe(II)-Fe(III) green rusts: occurrences of the mineral in hydromorphic soils,” Environ. Sci. Technol. 32, 1058–1064 (1988).

    Article  Google Scholar 

  19. J.-M. R. Genin, Ph. Refait, G. Bourrie, M. Abdelmoula, and F. Trolard, “Structure and stability of the Fe(II)-Fe(III) green rust “fougerite” mineral and its potential for reducing pollutants in soil solutions,” Appl. Geochem. 16(5), 559–570 (2001).

    Article  Google Scholar 

  20. H. C. B. Hansen, O. K. Borggaard, and J. Sorensen, “Evaluation of the free energy of formation of iron(II)iron(III)-hydroxide-sulphate (green rust) and its reduction of nitrite,” Geochim. Cosmochim. Acta 58, 2599–2608 (1994).

    Article  Google Scholar 

  21. R. S. Kukkadapu, J. M. Zachara, J. K. Fredrickson, and D. W. Kennedy, “Biotransformation of two-line ferrihydrite by dissimilatory Fe(III) reducing bacterium: formation of carbonate green-rust in presence of phosphate,” Geochim. Cosmochim. Acta 68, 2799–2924 (2006).

    Article  Google Scholar 

  22. L. Legrand, L. Mazerolles, and A. Chausse, “The oxidation of carbonate green rust into ferric phases: solidstate reaction or transformation via solution,” Geochim. Cosmochim. Acta 68, 3497–3507 (2004).

    Article  Google Scholar 

  23. D. G. Lewis, “Factors influencing the stability and properties of green rusts,” Adv. Geoecol. Reiskirhen 30, 345–372 (1997).

    Google Scholar 

  24. G. Ona-Nguema, M. Abdelmoula, F. Jorand, O. Behali, A. Genin, J.-C. Block, and J.-M. Genin, “Iron (II, III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction,” Environ. Sci. Technol. 36, 16–20 (2002).

    Article  Google Scholar 

  25. Ph. Refait, M. Abdelmoula, F. Trolard, J. M. R. Genin, J. J. Ehrhardt, and G. Bourrie, “Mossbauer and XAS study of green rust mineral: the partial substitution of Fe2+ by Mg2+,” Am. Miner. 86, 731–739 (2001).

    Google Scholar 

  26. Ph. Refait, A. Charton, and J.-M. R. Genin, “Identification, composition, thermodynamic and structural properties of a pyroaurite-like iron(II)-iron(III) hydroxyl-oxalate green rust,” Eur. J. Solid State Inorg. Chem. 35, 655–666 (1998).

    Article  Google Scholar 

  27. E. E. Roden and M. M. Urrutia, “Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction,” Geomicrobiology J. 19, 209–251 (2002).

    Article  Google Scholar 

  28. E. E. Roden, M. M. Urrutia, and C. J. Mann, “Bacterial reductive dissolution of crystalline Fe(II) oxide in continuous-flow column reactors,” Appl. Environ. Microbiol. 66, 1062–1065 (2000).

    Article  Google Scholar 

  29. C. Ruby, C. Upadhyay, A. Genin, G. Ona-Nguema, and J.-M. R. Genin, “In situ redox flexibility of FeII-III oxyhydroxycarbonate green rust and fougerite,” Environ. Sci. Technol. 40, 4696–4702 (2006).

    Article  Google Scholar 

  30. A. Sumoondur, I. Ahmed, and L. G. Benning, “Green rust as a precursor for magnetite: an in situ synchrotron based study,” Mineral. Mag. 72, 201–204 (2008).

    Article  Google Scholar 

  31. R. M. Taylor, “Formation and properties of Fe(II)Fe(III) hydroxy-carbonate and its possible significance in soil formation,” Clay Miner. 15, 369–382 (1980).

    Article  Google Scholar 

  32. F. Trolard and G. Bourrie, “Fougerite a natural layered double hydroxide in gley soil: habitus, structure, and some properties,” Clay Miner. Nat., Ch. 9, 171–188 (2012).

    Google Scholar 

  33. F. Trolard and G. Bourrie, “Geochemistry of green rusts and fougerite: a reevaluation of Fe cycle in soils,” Adv. Agron. 99, Ch. 5, 227–287 (2008).

    Article  Google Scholar 

  34. F. Trolard and G. Bourrie, “Structure of fougerite and rusts and thermodynamic model for their stabilities,” J. Geochem. Explor. 88, 249–251 (2006).

    Article  Google Scholar 

  35. F. Trolard, G. Bourrie, E. Jeanroy, A. J. Herbillon, and H. Martin, “Trace metals in natural iron oxides from laterites: a study using selective kinetic extraction,” Geochim. Cosmochim. Acta 59, 1285–1297 (1995).

    Article  Google Scholar 

  36. M. Usman, K. Hanna, M. Abdelmoula, A. Zegeye, P. Faure, and C. Ruby, “Formation of green rust via mineralogical transformation of ferric oxides (ferrihydrite, goethite and hematite),” Appl. Clay Miner. 64, 38–43 (2012).

    Article  Google Scholar 

  37. World Reference Base for Soil Resources (Wageningen, 1998), No. 84.

  38. A. Zegeye, C. Mustin, and F. Jorand, “Bacterial and iron oxide aggregation mediate secondary iron mineral formation: green rust versus magnetite,” Geobiology 8, 209–222 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Vodyanitskii.

Additional information

Original Russian Text © Yu.N. Vodyanitskii, S.A. Shoba, 2015, published in Pochvovedenie, 2015, No. 3, pp. 277–287.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodyanitskii, Y.N., Shoba, S.A. Ephemeral Fe(II)/Fe(III) layered double hydroxides in hydromorphic soils: A review. Eurasian Soil Sc. 48, 240–249 (2015). https://doi.org/10.1134/S106422931503014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422931503014X

Keywords

Navigation