Skip to main content
Log in

Degradation of nitrates with the participation of Fe(II) and Fe(0) in groundwater: A review

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Nitrates from soil and nitrogen fertilizers unused by plants become hazardous pollutants and contaminate surface and ground waters. In the water-saturated layers, into which nitrates are leached, the content of organic matter (i.e., electron donors necessary for nitrification) can be insufficient. The deficiency of electrons in the groundwater can be eliminated by Fe(II) minerals that remained in the heavy rocks and are available to microorganisms due to dispersion. However, when the groundwater table is shallow (less than at 10 m), the natural denitrification develops poorly; therefore, remediation is needed to enrich the contaminated water with electron donors. Zerovalent iron is most frequently used for this purpose. The efficiency of the Fe0 barriers for the purification of groundwater from nitrates increases due to the activation of anaerobic denitrifying bacteria. In addition, the geochemical conditions and the composition of the bacterial community change in the Fe0 barrier zone, which favors the development of a wide range of anaerobic hydrogenotrophic bacteria (primarily Fe(III) reductants).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Bashkin, Biogeochemistry (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  2. Yu. N. Vodyanitskii and S. A. Shoba, “Biogeochemistry of iron in overmoistened soils: an analytical review,” Pochvovedenie, No. 9, 1047–1059 (2013).

    Google Scholar 

  3. G. A. Zavarzin and N. N. Kolotilova, Introduction to Natural Historical Microbiology (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  4. V. A. Kovda, Biogeochemistry of Soil Cover (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  5. Yu. Yu. Lur’e, Handbook on Analytical Chemistry (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  6. V. G. Mineev, Agrochemistry (Moscow State Univ., Moscow, 2004) [in Russian].

    Google Scholar 

  7. E. N. Mishustin and V. T. Emtsev, Microbiology (Kolos, Moscow, 1978) [in Russian].

    Google Scholar 

  8. A. V. Pinevich, Microbiology of Iron and Manganese (St. Petersburg State Univ., St. Petersburg, 2005) [in Russian].

    Google Scholar 

  9. V. A. Chernikov, O. F. Sokolov, and R. F. Baibekov, Ecological Principles of Water Quality and Human Health (Pushchino, 2004) [in Russian].

    Google Scholar 

  10. I. F. Cheng, R. Mufitkian, Q. Fernando, and N. Korte, “Reductive of nitrate to ammonia by zero-valent iron,” Chemosphere 35, 2689–2695 (1997).

    Article  Google Scholar 

  11. D.-W. Cho, R. A. I. Abou-Shnab, Y. Kim, B.-H. Jeon, and H. Song, “Enhanced reduction of nitrate in groundwater by zero-valent iron with activated red mud,” Geosyst. Eng. 14, 65–70 (2011).

    Article  Google Scholar 

  12. S. Choe, Y. Y. Chang, K. Y. Hwang, and K. J. Hwang, “Kinetics of reductive denitrification by nanoscale zero-valent iron,” Chemosphere 41, 1307–1311 (2000).

    Article  Google Scholar 

  13. S. Choe, Liljestrand H.M., and Khim, J. Nitrate reduction by zero-valent iron under different pH regimes,” Appl. Geochim. 19, 335–342 (2004).

    Article  Google Scholar 

  14. K. Choi and W. Lee, “Reductive dechlorination of carbon tetrachloride in acidic soil manipulated with iron(II) and bisulfide ion,” J. Hazard Mater. 172, 523–630 (2009).

    Article  Google Scholar 

  15. J. Dolfing, M. van Eekert, A. Seech, J. Vogan, and J. Mueller, “In situ chemical reduction (ISCR) technologies: significance of low Eh reactions,” Soil Sediment Contam. 17, 63–74 (2008).

    Article  Google Scholar 

  16. V. Ernstsen, “Reduction of nitrate by Fe2+ in clay minerals,” Clays Clay Miner. 44, 599–608 (1996).

    Article  Google Scholar 

  17. S. Gandhi, B.-T. Oh, J. L. Schnoor, and P. J. J. Alvarez, “Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions,” Water Resour. 36, 1973–1982 (2002).

    Google Scholar 

  18. R. Gerlach, A. Cunningham, and F. Caccavo, “Dissimilatory iron-reducing bacteria can influence the reduction of CCl4 by iron metal,” Environ. Sci. Technol. 34, 2461–2464 (2000).

    Article  Google Scholar 

  19. K. B. Gregory, B. Oh, M. M. Scherer, G. F. Parkin, and P. J. J. Alvarez, “Biogeochemical degradation of redoxsensitive compounds using iron oxide and Geobacter metallireducens GS-15,” in The 220th American Chemical Society National Meeting, 2000, Vol. 40, pp. 411–412.

  20. J. R. Hansen, V. Ernstsen, J. C. Refsgaaard, and S. Hansen, “Field scale heterogeneity of redox conditions in till-upscalling to a catchment nitrate model,” Hydrogeol. J. 16, 1251–1266 (2008).

    Article  Google Scholar 

  21. B. R. Helland, P. J. J. Alvarez, and J. L. Schnoor, “Reductive dechlorination of carbon tetrachloride with elemental iron,” J. Hazard Mater. 41, 205–216 (1995).

    Article  Google Scholar 

  22. A. D. Henderson and A. H. Demind, “Long-term performance of zero-valent iron permeable reactive barriers: a critical review,” Environ. Eng. Sci. 24, 401–423 (2007).

    Article  Google Scholar 

  23. H. Y. Hu, N. Goto, and K. Fujie, “Effect of pH on the reduction of nitrite in water by metallic iron,” Water Resour. 35, 2789–2792 (2001).

    Google Scholar 

  24. C. P. Huang, P. C. Wang, and P. C. Chiu, “Nitrate reduction by metallic iron,” Water Resour. 32, 2357–2364 (1998).

    Google Scholar 

  25. Y. H. Huang and T. S. Zhang, “Effects of dissolved oxygen on formation of corrosion products and contaminant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+,” Water Resour. 39, 1751–1760 (2005).

    Google Scholar 

  26. Y. H. Huang and T. S. Zhang, “Effects of low pH on nitrate reduction by iron powder,” Water Resour. 38, 2631–2642 (2004).

    Google Scholar 

  27. Y. H. Huang and T. S. Zhang, “Effects of surface-bound Fe2+ on nitrate reduction and transformation of iron oxides in zero-valent iron systems at near-neutral pH,” J. Environ. Eng. 132, 527–536 (2006).

    Google Scholar 

  28. Y. H. Huang and T. S. Zhang, “Kinetics of nitrate reduction by iron at near neutral pH,” J. Environ. Eng. 128, 604–611 (2002).

    Article  Google Scholar 

  29. Y. H. Huang and T. S. Zhang, “Nitrite reduction and formation of corrosion coatings in zero-valent iron systems,” Chemosphere 64, 937–943 (2006).

    Article  Google Scholar 

  30. Y. H. Huang, T. S. Zhang, P. J. Shea, and S. D. Comfort, “Effects of oxide coating and selected cations on nitrate reduction by iron metal,” J. Environ. Qual. 32, 1306–1315 (2003).

    Article  Google Scholar 

  31. S. Krajangpan, B. J. Chishoim, H. Kalita, and A. N. Bezbaruah, “Challenges in groundwater remediation with iron nanoparticles: enable colloidal stability,” in Nanotechnologies for Water Environment Application, Ed. by T. Zhang, R. Sarampalli, et al. (American Society of Civil Engineers, 2009), Ch. 8, pp. 191–212.

    Chapter  Google Scholar 

  32. L. Liang, N. Korte, B. Gu, R. Pils, and C. Reeter, “Geochemical and microbial reactions affecting the long-term performance of in situ “iron barriers”,” Adv. Environ. Res. 4, 273–286 (2000).

    Article  Google Scholar 

  33. D. R. Lovley and S. Goodwin, “Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments,” Geochim. Cosmochim. Acta 52, 2993–3003 (1988).

    Article  Google Scholar 

  34. M. D. Mackay and J. A. Cherry, “Groundwater contamination: pump-and-treat remediation,” Environ. Sci. Technol. 23, 630–636 (1989).

    Article  Google Scholar 

  35. R. Miehr, P. G. Tratnyek, J. Z. Bandstra, M. J. Scherer, M. J. Alowitz, and E. J. Bylaska, “Diversity of contaminant reduction reactions by zero-valent iron: role of the reductate,” Environ. Sci. Technol. 38, 139–147 (2004).

    Article  Google Scholar 

  36. D. Mishra and J. Farrell, “Understanding nitrate reaction with zerovalent iron using tafel analysis and electrochemical impendence spectroscopy,” Environ. Sci. Technol. 39, 645–650 (2005).

    Article  Google Scholar 

  37. B. T. Nolan, B. C. Rudy, K. J. Hitt, and D. R. Helsel, “Risks of nitrate in ground water of the United States — national perspective,” Environ. Sci. Technol. 31, 2229–2236 (1997).

    Article  Google Scholar 

  38. C. Noubactep, S. Care, and R. Crane, “Nanoscale metallic iron for environmental remediation: prospects and limitations,” Water Air Soil Pollut. 223, 1363–1382 (2012).

    Article  Google Scholar 

  39. S. F. O’Hannesin and R. W. Gillham, “Long-term performance of an in situ “iron wall’ for remediation of VOCs,” Ground Water 36, 164–170 (1998).

    Article  Google Scholar 

  40. C. J. Ottley, W. Davidson, and W. M. Edmubds, “Chemical catalysis of nitrate reduction by iron(II),” Geochim. Cosmochim. Acta 61, 1819–1828 (1997).

    Article  Google Scholar 

  41. B. D. M. Painter, Thesis Ph. D. (Lincoln Univ., New Zeeland, 2005).

  42. W. D. Robertson and J. A. Cherry, “In situ denitrification of septic-system nitrate using reactive porous media barriers: field trials,” Ground Water 33, 99–111 (1995).

    Article  Google Scholar 

  43. S. J. Rodvang and W. W. Simpkins, “Agricultural contaminants in Quaternary aquitards: review of occurrence and fate in North America,” Hydrogeol. J. 9, 44–59 (2001).

    Article  Google Scholar 

  44. M. J. Scherer, S. Richter, R. L. Valentine, and P. J. J. Alvarez, “Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up,” Crit. Rev. Microbiol. 26, 221–264 (2000).

    Article  Google Scholar 

  45. L. Schipper and M. Vojvodic-Vukovic, “Nitrate removal from groundwater using a denitrification wall amended with sawdust,” J. Environ. Qual. 27, 664–668 (1998).

    Article  Google Scholar 

  46. R. C. Starr and J. A. Cherry, “In situ remediation of contaminated ground water: the funnel-and-gate system,” Ground Water 32, 465–476 (1994).

    Article  Google Scholar 

  47. T. Suzuki, M. Moribe, Y. Oyama, and M. Niinae, “Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies,” Chem. Eng. J. 183, 271–277 (2012).

    Article  Google Scholar 

  48. B. A. Till, L. J. Weathers, and P. J. Alvarez, “Fe(0)-supported autotrophic denitrification,” Environ. Sci. Technol. 32, 634–639 (1998).

    Article  Google Scholar 

  49. G. C. Yang and H. L. Lee, “Chemical reduction of nitrate by nanosized iron: kinetics and pathways,” Water Resour. 39, 884–894 (2005).

    Google Scholar 

  50. J.-J. Yu and S.-Y. Chou, “Contaminated site remedial investigation and feasibility removal of chlorinated volatile organic compounds from groundwater by activated carbon fiber adsorption,” Chemosphere 41, 371–378 (2000).

    Article  Google Scholar 

  51. W. Zhang, “Nanoscale iron particles for environmental remediation: an overview,” J. Nanopart. Res. 5, 323–332 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Vodyanitskii.

Additional information

Original Russian Text © Yu.N. Vodyanitskii, V.G. Mineev, 2015, published in Pochvovedenie, 2015, No. 2, pp. 156–165.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodyanitskii, Y.N., Mineev, V.G. Degradation of nitrates with the participation of Fe(II) and Fe(0) in groundwater: A review. Eurasian Soil Sc. 48, 139–147 (2015). https://doi.org/10.1134/S1064229315020131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229315020131

Keywords

Navigation