Skip to main content
Log in

Effect of the chemical composition of green manure crops on humus formation in a Soddy-Podzolic soil

  • Agricultural Chemistry and Soil Fertility
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The effects of different types of green manure (Trifolium pratense L., Dactylis glomerata L., and Secale cereale L.) and the time of its input into the soil (autumn and spring) on the contents of humus and labile humus substances in a soddy-podzolic soil and the relationship between the formation of humus and the chemical composition of the applied biomass were studied. Green manure had a positive effect on the accumulation of humus in the soil. When the plants were plowed into the soil in the fall, the amount of humus formed in the soil in the first year was 0.1% higher in comparison with the spring application of green manure. The most active synthesis of new humus substances took place upon the following properties of the plant biomass: C: N = 15–25, the cellulose content of 20–28%, and the lignin content of 14–17%. The highest amount of labile humus substances was formed during the decomposition of the biomass with the C: N ratio above 20, the cellulose content of 19–20%, and the lignin content of 14–16%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Z. Ayupov, N. S. Anokhina, and I. F. Minibaeva, “Elements of biological farming and their impact on the dynamics of labile humic substances and yields and grain quality of winter wheat,” Vestn. OGU, 100(6), 537–539 (2009).

    Google Scholar 

  2. N. N. Bambalov, “Changes in the elemental composition of lignin during humification,” Eur. Soil Sci. 44(10), 1090–1096 (2011).

    Article  Google Scholar 

  3. E. F. Vedrova and L. V. Mukhortova, “Dynamics of the easily mineralizable fraction of organic matter under forest cultures,” in Modern Problems of Soil Science in Siberia Mater. Intern. Conf. (Izd. Tomsk. Gos. Univ., Tomsk, 2000), pp. 296–299 [in Russian].

    Google Scholar 

  4. A. V. Dedov, “Methods to reproduce humus in chernozems,” Al’manakh AGRO XXI, Nos. 7–12, 113–116 (2002).

    Google Scholar 

  5. B. M. Kogut, S. A. Sysuev, and V. A. Kholodov, “Water stability and labile humic substances of typical chernozems under different land uses,” Eur. Soil Sci. 45(5), 496–502 (2012).

    Article  Google Scholar 

  6. V. V. Lapa, T. M. Seraya, E. N. Bogatyreva, and O. M. Biryukova, “The effect of long-term fertilizer application on the group and fractional composition of humus in a soddy-podzolic light loamy soil,” Eur. Soil Sci. 42(1), 100–104 (2011).

    Article  Google Scholar 

  7. G. G. Morkovkin and I. V. Demina, “Intensity of mineralization of green manure crops and changes in the humus content of leached chernozems in a moderately dry steppe of Altai region,” Vestn. Altaisk. Gos. Agrarn. Univ., 51(1), 12–16 (2009).

    Google Scholar 

  8. B. A. Nikitin, “Refinement of the method of determination of soil humus,” Agrokhimiya, No. 8, 18–26 (1983).

    Google Scholar 

  9. G. V. Pirogovskaya, “The effect of catch crops on the enrichment of coarse-textured soils with organic matter,” Pochvoved. Agrokhimiya, 34(1), 281–284 (2005).

    Google Scholar 

  10. V. V. Ponomareva and T. A. Plotnikova, Humus and Soil Formation (Study Methods and Results) (Leningrad, 1980) [in Russian].

    Google Scholar 

  11. A. I. Popov, Humic Substances: Properties, Composition, and Origin (St. Petersburg, 2004) [in Russian].

    Google Scholar 

  12. L. Tripol’skaya, D. Romanovskaya, and A. Shlepetene, “Humus status of soddy-podzolic soil upon application of different green manures,” Eur. Soil Sci. 41(8), 882–889 (2008).

    Article  Google Scholar 

  13. A. S. Tulina, V. M. Semenov, L. N. Rozanova, T. V. Kuznetsova, N. A. Semenova, “Influence of moisture on the stability of soil organic matter and plant residues,” Eur. Soil Sci. 42(11), 1241–1248 (2009).

    Article  Google Scholar 

  14. V. V. Chuprova, “Easily decomposable organic matter in soils of Central Siberia,” in Modern Problems of Soil Science in Siberia Mater. Intern. Conf. (TGU, Tomsk, 2000), pp. 468–471 [in Russian].

    Google Scholar 

  15. F. Andreux, “Humus in world soils,” in Humic Substances in Terrestrial Ecosystems, Ed. by A. Piccolo (Elsevier, 1996), pp. 45–91.

    Chapter  Google Scholar 

  16. A. Arlauskiene, S. Maiksteniene, and A. Slepetiene, “The effect of catch crops and straw on spring barley nitrogen nutrition and soil humus composition,” Zemdirbyste (Agriculture) 96(2), 53–70 (2009).

    Google Scholar 

  17. H. Aronsson, Nitrogen turnover and leaching in cropping systems with ryegrass catch crops Diss. (Summary) (Sveriges lantbruksuniv., Acta Universitatis Agriculturae Sueciae. Agraria, 1401–6249, Uppsala, 2000).

    Google Scholar 

  18. A. A. Korsaeth, T. M. Henriksen, and L. R. Bakken, “Temporal changes in mineralization and immobilization of N during degradation of plant material: implications for the plant N supply and nitrogen losses,” Soil Biol. Biochem. 34(6), 789–799 (2002).

    Article  Google Scholar 

  19. F. Azam, “Studies on organic matter dynamics and nitrogen availability using 14C and 15N,” Pakistan J. Agron. 1(1), 20–24 (2002).

    Google Scholar 

  20. K. Franzluebbers, R. W. Weaver, and A. S. R. Juo, “Mineralization of labeled N from cowpea (Vigna unguiculata (L.) Walp.) plant parts at two growth stages in sandy soil,” Plant Soil 160(2), 259–266 (1994).

    Article  Google Scholar 

  21. A. Gransted and G. Baeckstrom, “Studies of the preceding crop effect of ley in ecological agriculture,” Am. J. Alternative Agric. 15(2), 68–78 (2000).

    Article  Google Scholar 

  22. T. M. Henriksen and T. A. Breland, “Evaluation of criteria for describing crop residues degradability in a model of carbon and nitrogen turnover in soil,” Soil Biol. Biochem. 31, 1135–1149 (1999).

    Article  Google Scholar 

  23. J. M.-F. Johnson, N. W. Barbour, and S. L. Weyers, “Chemical composition of crop biomass impacts its decomposition,” Soil Sci. Soc. Am. J, 71(1), 155–162 (2005).

    Article  Google Scholar 

  24. T. Kätterer, “Carbon flows and sustainable agriculture,” in Sustainable Agriculture, Ed. by Ch. Jakobsson (University, Uppsala, 2012).

    Google Scholar 

  25. A. Korsaeth, L. Molstand, and L. R. Bakka, “Modelling the competition for nitrogen between plants and micro-flora as a function of soil heterogeinity,” Soil Biol. Biochem., No. 33, 215–226 (2001).

    Google Scholar 

  26. S. Lars, L. Jensen, T. Salo, F. Palmason, A. T. Tor Arvid Breland, T. M. Henriksen, B. Stenberg, A. Ch. M. Pedersen, C. Lundström, and M. Esala, “Influence of biochemical quality on C and N mineralization from a broad variety of plant materials in soil,” Plant Soil 273(1–2), 307–326 (2005).

    Google Scholar 

  27. S. Maikštėnienė, A. Velykis, A. Arlauskienė, and A. Satkus, “Tausojamoji žemdirbystė našiuose dirvožemiuose: monografija,” (Akademija, Kėdainiur, 2008), pp. 191–208 [in Lithuanian with summary in English].

    Google Scholar 

  28. deNeegaard A. Hauggaard-Nielsen H. et al., “Decomposition of white clover (Trifolium repens) and Ryegrass (Lolium perenne) components: C and N dynamics simulated with the daisy soil organic matter submodel,” Europ. J. Agron. 16(1), 43–55 (2002).

    Article  Google Scholar 

  29. A. Puttaso, P. Vityakon, P. Saenjan, V. Treloges, G. Cadisch, “Relationship between residue quality, decomposition patterns, and soil organic matter accumulation in tropical sandy soil after 13 years,” Nutr. Cycling Agroecosyst. 89(2), 159–174 (2011).

    Article  Google Scholar 

  30. L. Talgre, E. Lauringson, A. Makke, and L. Lauk, “Biomass production and nutrient binding of catch crops,” emdirbyst (Agriculture) 98(3), 251–258 (2011).

    Google Scholar 

  31. L. Thuries, M. Pansu, M.-C. Larre-Larrouy, and C. Feller, “Biochemical composition and mineralization kinetics of organic inputs in sandy soil,” Soil Biol. Biochem. 34, 239–250 (2002).

    Article  Google Scholar 

  32. R. Varnait, A. Paškevičius, and V. Raudonienė, “Cellulose degradation in rye straw by micromicetes and their complex,” Ekologija 1, 29–31 (2008).

    Article  Google Scholar 

  33. M. Wivstad, B. Bath, B. Ramert, and Y. Eklind, “Legumes as a nutrients source for iceberg lettuce (Lactuca sativa Crispa),” Soil Plant Sci. 53(2), 69–75 (2003).

    Google Scholar 

  34. D. R. Zak, W. E. Holmes, N. W. MacDonald, and K. S. Pregitzer, “Soil temperature, matric potential, and kinetics of microbial respiration and nitrogen mineralization,” Soil Sci. Soc. Am. J. 63, 575–584 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tripolskaja.

Additional information

Original Russian Text © L. Tripolskaja, D. Romanovskaja, A. Slepetiene, A. Razukas, G. Sidlauskas, 2014, published in Pochvovedenie, 2014, No. 4, pp. 480–489.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripolskaja, L., Romanovskaja, D., Slepetiene, A. et al. Effect of the chemical composition of green manure crops on humus formation in a Soddy-Podzolic soil. Eurasian Soil Sc. 47, 310–318 (2014). https://doi.org/10.1134/S1064229314040097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229314040097

Keywords

Navigation