Skip to main content
Log in

The intensity of organic matter decomposition in gray soils of forest ecosystems in the southern taiga of Central Siberia

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The estimates of the carbon pool in the organic matter of gray soils of the southern taiga, the intensity of destruction of its components, and participation of the latter in the formation of the mineralized carbon flux to the atmosphere are presented for different stages of succession of deciduous (birch) and coniferous (fir) forests. The carbon pool varies from 139.7 to 292.7 t/ha. It is distributed between phytodetritus, mobile and stabile humus (32, 19, and 49%, respectively). The intensity of the mineralization carbon flux to the atmosphere amounts to 3.93–4.13 t C per year. Phytodetritus plays the main role in the formation of this flux. In the soils under the forests studied, 4–6% of the carbon flux are formed owing to mineralization of the newly formed soil humus. In birch forests, 2–6% (0.1–0.2% of the humus pool in the 0–20-cm layer) is the contribution to the flux due to mineralization of soil humus. In fir forests, the mineralized humus is compensated by humus substances synthesized in the process of humification during phytodetritus decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agroclimatic Reference Book of Krasnoyarsk Krai and Tyva Autonomous Republic (Gidrometeoizdat, Leningrad, 1961) [in Russian].

  2. E. F. Vedrova, Extended Abstract of Doctoral Dissertation in Biology (Krasnoyarsk, 2005).

  3. E. F. Vedrova, “Organic Matter Decomposition in Forest Litters,” Pochvovedenie, No. 2, 216–223 (1997) [Eur. Soil Sci. 30 (2), 181–188 (1997)].

  4. E. F. Vedrova, “Response of Organic Matter in Forest Soils to Changes in Conditions of Humus Formation (Experimental Study),” Pochvovedenie, No. 10, 1240–1246 (1996) [Eur. Soil Sci. 29 (10), 1156–1161 (1996)].

  5. E. F. Vedrova and T. N. Mindeeva, “CO2 Production Rate at the Decomposition of Forest Litters,” Lesovedenie, No. 1, 30–41 (1998).

  6. E. F. Vedrova, L. V. Spiridonova, and V. D. Stakanov, “Carbon Cycle in Young Forest-Forming Species of Siberia,” Lesovedenie, No. 3, 40–48 (2000).

  7. E. F. Vedrova, F. I. Pleshikov, and V. Ya. Kaplunov, “Structure of Organic Matter in the Northern-Taiga Ecosystems of the Middle Siberia,” Lesovedenie, No. 6, 3–12 (2002).

  8. N. F. Ganzhara and D. S. Orlov, Transformation of Soil Organic Matter in Agrolandscapes (Moscow, 1993) [in Russian].

  9. V. N. Gorbachev and E. P. Popova, Southern Taiga Soil Cover of the Middle Siberia (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  10. G. A. Zavarzin, Carbon Cycle in the Territory of Russia (Moscow, 1999) [in Russian].

  11. I. S. Kaurichev, “Yashin, A.D. Kashanskii, V.S. Kashchenko, “Use of Sorption Lysimeters in the Study of Water Migration of Substances in Podzolic Soils of the Northern Europe,” Pochvovedenie, No. 8, 29–41 (1986).

  12. M. Kershens, “The Role of Humus in Soil Fertility and Nitrogen Cycle,” Pochvovedenie, No. 10, 122–131 (1992).

  13. Classification and Diagnostics of Soils of Russia (Oikumena, Moscow, 2004) [in Russian].

  14. K. I. Kobak, Biotic Components of the Carbon Cycle (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  15. B. M. Kogut, “Principles and Methods of Assessing the Content of Labile Organic Matter in Plowed Soils,” Pochvovedenie, No. 3, 308–316 (2003) [Eur. Soil Sci. 36 (3), 283–290 (2003)].

  16. M. M. Kononova, Soil Organic Matter, Its Nature, Properties, and Methods of Study (Akad. Nauk SSSR, Moscow, 1966) [in Russian].

    Google Scholar 

  17. E. N. Krasekha and T. M. Korsunova, Subtaiga Soils of the Middle Siberia (Krasnoyarsk, 1985) [in Russian].

  18. V. N. Kudeyarov, “Contribution of Soil to the Budget of Atmospheric CO2 in the Territory of Russia,” Dokl. Ross. Akad. Nauk, Obshch. Biol. 375(2), 275–277 (2000).

    Google Scholar 

  19. V. N. Kudeyarov, “The Role of Soils in the Carbon Cycle,” Pochvovedenie, No. 8, 915–923 (2005) [Eur. Soil Sci. 38 (8), 808–815 (2005)].

  20. V. V. Kuz’michev, V. V. Ivanov, N. N. Koshurnikova, and P. A. Oskorbin, “Dark Coniferous Forests of Southern Taiga in the Western Siberia,” Lesovedenie, No. 1, 1–5 (2007).

  21. I. N. Kurganova and V. N. Kudeyarov, “Assessment of Carbon Dioxide Fluxes from Soils of the Taiga Zone of Russia,” Pochvovedenie, No. 9, 1058–1071 (1998) Eur. Soil Sci. 31 (9), 954–965 (1998)].

  22. A. A. Larionova, L. N. Rozonova, T. S. Demkina, et al., “Annual Emission of CO2 from Gray Forest Soils,” Pochvovedenie, No. 1, 72–80 (2001) [Eur. Soil Sci. 34 (1), 61–68 (2001)].

  23. O. I. Poluboyarinov, Wood Density (Lesnaya Promyshlennost’, Moscow, 1976) [in Russian].

    Google Scholar 

  24. V. M. Semenov, I. K. Kravchenko, L. A. Ivannikova, et al., “Experimental Determination of the Active Organic Matter Content in Some Soils of Natural and Agricultural Ecosystems,” Pochvovedenie, No. 3, 282–292 (2006) [Eur. Soil Sci. 39 (3), 251–260 (2006)].

  25. Middle Siberia (Nauka, Moscow, 1964) [in Russian].

  26. R. L. Tate, Soil Organic Matter: Biological and Ecological Effects (Wiley, New York, 1987).

    Google Scholar 

  27. I. V. Tyurin and O. A. Naidenova, “Composition and Properties of Humic Acids Dissolved in Diluted Alkalis before and after Decalcification,” Tr. Pochv. Inst. Akad. Nauk SSSR 38, 59–64 (1951).

    Google Scholar 

  28. A. D. Fokin, “Dynamic Characterization of the Podzolic Soil Humus Profile,” Izv. Timiryazevsk. S-Kh. Akad., No. 4, 80–88 (1975).

  29. A. D. Fokin, Involvement of Different Compounds from Plant Residues into the Formation and Renewal of Humus Substances in the Soil (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  30. M. Sh. Shaimukhametov and K. A. Voronina, “A Procedure for Fractionation of Organic-Clay Complexes with Laboratory Centrifuges,” Pochvovedenie, No. 8, 134–138 (1972).

  31. M. Sh. Shaimukhametov, N. A. Titova, L. S. Travnikova, and E. M. Labenets, “Physical Methods of Fractionation and the Characterization of Soil Organic Matter,” Pochvovedenie, No. 8, 131–141 (1984).

  32. I. N. Sharkov, S. L. Bukreeva, and A. A. Danilova, “Role of Readily Mineralizable Organic Matter in the Stabilization of Carbon Pool in Arable Soils,” Sib. Ekol. Zh., No. 4, 363–368 (1997).

  33. E. Shulz and M. Kershens, “Characterization of the Decomposable Part of Soil Organic Matter (SOM) and Transformation Processes by Hot Water Extraction,” Pochvovedenie, No. 7, 890–894 (1998) [Eur. Soil Sci. 31 (7), 809–813 (1998)].

  34. B. Berg, M. P. Berg, P. Bottner, et al., “Litter Mass Loss Rates in Pine Forests of Europe and Eastern United States: Some Relationships with Climate and Litter Quality,” Biogeochemistry 20, 127–159 (1993).

    Article  Google Scholar 

  35. S. A. Billings, D. D. Richter, and J. Yarie, “Soil Carbon Dioxide Fluxes and Profile Concentrations in Two Boreal Forests,” Can. J. For. Res., No. 28, 1773–1783 (1998).

    Google Scholar 

  36. P. G. Hanson, N. T. Edwards, C. T. Garten, and J. A. Andrews, “Separating Root and Soil Microbial Contribution to Soil Respiration: A Review of Methods and Observations,” Biogeochemistry 48, 115–146 (2000).

    Article  Google Scholar 

  37. D. S. Jenkinson and J. H. Rayner, “The Turnover of Soil Organic Matter in Some of the Rothamsted Classical Experiments,” Soil Sci. 123(5), 298–305 (1977).

    Article  Google Scholar 

  38. R. J. Keenan, C. E. Prescott, and J. P. Kimmins, “Mass and Nutrient Content of Woody Debris and Forest Floor in Western Red Cedar and Western Hemlock Forests on Northern Vancouver Island,” Can. J. For. Res., No. 23, 1052–1059 (1993).

    Google Scholar 

  39. J. Mackensen, J. Bauhus, and E. Webber, “Decomposition Rates of Coarse Woody Debris: A Review with Particular Emphasis on Australian Tree Species,” Austr. J. Bot. 51(1), 27–37 (2003).

    Article  Google Scholar 

  40. J. L. Marra and R. L. Edmonds, “Coarse Woody Debris and Soil Respiration in a Clearcut on the Olympic Peninsula, USA,” Can. J. Fir. Res., No. 26, 1337–1345 (1996).

    Google Scholar 

  41. W. H. Schlesinger and J. A. Andrews, “Soil Respiration and Global Carbon Cycle,” Biogeochemistry 48, 7–20 (2000).

    Article  Google Scholar 

  42. A. Shvidenko and S. Nilson, “A Synthesis of the Impact of Russian Forests on the Global Carbon Budget for 1961–1998,” Tellus 55, 391–415 (2003).

    Article  Google Scholar 

  43. V. Stolbovoi, “Soil Respiration and Its Role in Russia’s Terrestrial C Flux Balance for Kyoto Baseline Year,” Tellus, 55, 258–269 (2003).

    Article  Google Scholar 

  44. E. F. Vedrova, L. S. Shugaley, and V. D. Stakanov, “Carbon Budget in Natural and Disturbed Forests of Southern Taiga in Central Siberia,” J. Veget. Sci., No. 13, 341–350 (2002).

    Google Scholar 

  45. B. Widen and H. Majdi, “Soil CO2 Efflux and Root Respiration at Three Sites in a Mixed Pine and Spruce Forest: Seasonal and Diurnal Variation,” Can J. For. Res. 31(5), 786–796 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Vedrova.

Additional information

Original Russian Text © E.F. Vedrova, 2008, published in Pochvovedenie, 2008, No. 8, pp. 973–982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vedrova, E.F. The intensity of organic matter decomposition in gray soils of forest ecosystems in the southern taiga of Central Siberia. Eurasian Soil Sc. 41, 860–868 (2008). https://doi.org/10.1134/S1064229308080085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229308080085

Keywords

Navigation