Skip to main content
Log in

Preparation of Silicon Oxide Films by a Hot-Target Impulse Magnetron Deposition in a Reactive Mixture

  • NANOELECTRONICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The modes of maintaining a pulsed magnetron discharge with a hot thermally insulated silicon target during operation in oxygen-containing gas mixtures (Ar + O2) have been studied. The range of the average power density at the target was 60–120 W/cm2 at a pulse duration of 100–300 µs and a repetition rate of 0.5–2 kHz. Maps of stable operating modes of the sputtering system have been determined. SixOy coatings were prepared on single-crystal silicon substrates at different values of the oxygen fraction in the gas flow and various parameters of the magnetron pulsed power supply and diagnosed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. K. Strijckmans, R. Schelfhout, and D. Depla, J. Appl. Phys. 124, 241101 (2018).

    Article  Google Scholar 

  2. V. I. Shapovalov, Materials (Basel) 16, 3258 (2023).

    Article  Google Scholar 

  3. R. Graillot-Vuillecot, A.-L. Thomann, T. Lecas, et al., Vacuum 197, 110813 (2022).

    Article  Google Scholar 

  4. R. Chodun, M. Dypa, B. Wicher, et al., Appl. Surf. Sci. 574, 151597 (2022).

    Article  Google Scholar 

  5. M. L. Reed and G. K. Fedder, Handbook of Sensors and Actuators (Springer, New York, 1998).

    Google Scholar 

  6. A. L. Pierce, S. Sommakia, J. L. Rickus, and K. J. Otto, J. Neurosci. Methods 180 (1), 106 (2009).

    Article  Google Scholar 

  7. L. Cui, A. N. Ranade, M. A. Matos, et al., ACS Appl. Mater. Interfaces 4 (12), 6587 (2012).

    Article  Google Scholar 

  8. B. G. Prevo, Y. Hwang, and O. D. Velev, Chem. Mater. 17 (14), 3642 (2005).

    Article  Google Scholar 

  9. L. Long, Y. Yang, and L. Wang, Sol. Energy Mater. Sol. Cells 197, 19 (2019).

    Article  Google Scholar 

  10. K. Steenbeck, Thin Solid Films 123 (3), 239 (1985).

    Article  Google Scholar 

  11. R. Y. Chau, W-S. Ho, J. C. Wolfe, D. L. Licon, et al., Thin Solid Films 287 (1–2), 57 (1996).

    Article  Google Scholar 

  12. A. V. Tumarkin, A. V. Kaziev, M. M. Kharkov, et al., Surf. Coatings Technol 293, 42 (2016).

    Article  Google Scholar 

  13. A. V. Kaziev, D. V. Kolodko, A. V. Tumarkin, et al., Surf. Coatings Technol. 409, 126889 (2021).

    Article  Google Scholar 

  14. A. V. Kaziev, D. V. Kolodko, and N. S. Sergeev, Plasma Sources Sci. Technol. 30, 055002 (2021).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-79-10242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kaziev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisenkov, V.Y., Kharkov, M.M., Kolodko, D.V. et al. Preparation of Silicon Oxide Films by a Hot-Target Impulse Magnetron Deposition in a Reactive Mixture. J. Commun. Technol. Electron. 68, 1321–1324 (2023). https://doi.org/10.1134/S1064226923070070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923070070

Navigation