Skip to main content
Log in

Forced Laser Nanostructuring of the Surface of Alumina-Oxide Ceramics

  • PHYSICAL PROCESSES IN ELECTRON DEVICES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The possibility of creating quasiperiodic nanostructures on the surface of articles made of ceramic materials based on α-Al2O3 under the action of a laser beam moved by a two-coordinate linear stepping motor (LSM) is shown. It is shown that the cause of the arising non-uniformity of heat release and convective instability of the molten layer are electromagnetic surface waves at the “conductor–insulator” interface, while the “conductor” is the melt layer. The discreteness of the laser beam movement due to the LSM makes it possible to create a regular wave-like relief on the melt surface, which plays the role of an input diffraction structure for generating a surface wave of TM polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, IEEE J. of Selected Topics in Quantum Electronics 23 (3), 9000615 (2017).

    Article  Google Scholar 

  2. V. Yu. Khomich and V. A. Shmakov, Usp. Fiz. Nauk 185, 489 (2015).

    Article  Google Scholar 

  3. H. M. van Driel, J. E. Sipe, and J. F. Young, Phys. Rev. Lett. 49 (26), 1955 (1982).

    Article  Google Scholar 

  4. I. N. Zavestovskaya, Kvant. Elektron. 40, 942 (2010).

    Article  Google Scholar 

  5. W. Ebeling, Strukturbildung bei Irreversiblen Prozessen, (Teubner, Leipzig, 1976).

    Google Scholar 

  6. A. V. Getling, Rayleigh-Benara’s Convection. Structures and Dynamics (Editorial, Moscow, 1999).

  7. M. R. Akopyan, R. B. Alaverdyan, Yu. S. Chilingaryan, and R. S. Akopyan, Izv. NAN Armenii. Fizika 49, 230 (2014).

    Google Scholar 

  8. M. N. Libenson, Soros. Obrazov. Zh., No. 10, 92 (1996).

  9. V. V. Klimov, Nanoplazmonika (Fizmatlit, Moscow, 2009).

    Google Scholar 

  10. R. A. Smith, Semiconductors (Cambridge Univ., Cambridge, 1978).

    MATH  Google Scholar 

  11. K. K. Strelov, Structure and Properties of Refractory Materials (Metallurgiya, Moscow, 1982).

    Google Scholar 

  12. P. Grosse, Freie Elektronen in Festkorpern (Berlin, 1979; Mir, Moscow 1982).

  13. M. A. Konoshenko, E. O. Filatova, A. S. Konashuk, A. V. Nelyubov, and A. S. Shirokov, Tech. Phys. Lett. 41, 922 (2015).

    Article  Google Scholar 

  14. S. Ansell, S. Krishnan, J. K. R. Weber, J. J. Felten, P. C. Nordine, M. A. Beno, D. L. Price, and M. Saboungi, Phys. Rev. Lett. 78, 464 (1997).

    Article  Google Scholar 

  15. V. K. Bityukov and V. A. Petrov, Prikl. Fiz., No. 4, 18 (2007).

  16. A. Yu. Vorob’ev, V. A. Petrov, V. E. Titov, and A. P. Chernyshev, Teplofiz. Vysok. Temp. 45, 19 (2007).

    Google Scholar 

  17. S. Krishnan, J. K. R. Weber, R. A. Schiffman, P. C. Nordine, and R. A. Reed, J. Amer. Ceramic Soc. 74 (4), 881 (1991).

    Article  Google Scholar 

  18. M. A. Korotin and E. V. Kurmaev, Fiz. Metall. & Materialoved. 119 (8), 1 (2018).

    Google Scholar 

  19. E. V. Savruk and S. V. Smirnov, Dokl. TUSUR, No. 1–2, 123 (2010).

    Google Scholar 

  20. E. V. Savruk, S. V. Smirnov, and A. N. Shvaitser, Izv. Vyssh. Uchebn. Zaved. Fiz. 51 (11–12), 114 (2008).

    Google Scholar 

  21. S. V. Smirnov, V. I. Vereshchagin, and L. V. Dvoretskaya, Steklo & Keram., No. 11, 14 (2005).

  22. A. B. Shvartsburg, Fotonika 12, 522 (2018).

    Google Scholar 

  23. B. A. Knyazev and A. V. Kuz’min, Vestnik NGU. Ser. Fizika 2, 108 (2007).

    Google Scholar 

  24. V. S. Avanesov, M. A. Zuev, and O. I. Steklov, Welding Intern 10, 240 (1996).

    Article  Google Scholar 

  25. A. G. Grigoryants and A. N. Safonov, Methods of Surface Laser Treatment (Vysshaya Shkola, Moscow, 1987).

    Google Scholar 

  26. G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics (Nauka, Moscow, 1988).

    MATH  Google Scholar 

Download references

Funding

The work was carried out by the team of the Scientific Laboratory of Integrated Optics and Radio Photonics and was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-03-2020-237/1 dated March 5, 2020, project no. FEWM-2020-0040. The experimental results were obtained using the equipment of TsPK “Impulse” (registration no. 200568).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Smirnov or V. V. Karanskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, S.V., Shandarov, S.M. & Karanskii, V.V. Forced Laser Nanostructuring of the Surface of Alumina-Oxide Ceramics. J. Commun. Technol. Electron. 67 (Suppl 1), S101–S107 (2022). https://doi.org/10.1134/S1064226922130228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922130228

Keywords:

Navigation