Skip to main content
Log in

Admittance of MIS Structures Based on nBn Systems of Epitaxial HgCdTe for Detection in the 3–5 μm Spectral Range

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The admittance of test MIS structures based on nBn systems from Hg1 – xCdxTe grown by molecular beam epitaxy is investigated. Composition x in the absorbing and contact layers is 0.29; in the barrier layer, it is 0.60. An equivalent circuit of an MIS-structure based on an nBn system is proposed and the nominal values of the elements of this circuit are found under various conditions. Comparison of the temperature dependence of the barrier resistance with the Rule07 model indicates the possibility of creating efficient nBn detectors based on HgCdTe grown by molecular beam epitaxy for the 3- to 5-μm spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Maimon and G. W. Wicks, Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235

    Article  ADS  Google Scholar 

  2. D. Z. Ting, A. Soibel, A. Khoshakhlagh, S. B. Rafol, S. A. Keo, L. Höglund, A. M. Fisher, E. M. Luong, and S. D. Gunapala, Appl. Phys. Lett. 113, 021101 (2018). https://doi.org/10.1063/1.5033338

    Article  ADS  Google Scholar 

  3. P. Martyniuk, K. Michalczewski, T. Y. Tsai, C. H. Wu, and Y. R. Wu, Phys. Status Solidi A 217, 1900522 (2020). https://doi.org/10.1002/pssa.201900522

    Article  ADS  Google Scholar 

  4. L. Mollard, G. Bourgeois, C. Lobre, S. Gout, S. Viollet-Bosson, N. Baier, G. Destefanis, O. Gravrand, J. P. Barnes, F. Milesi, A. Kerlain, L. Rubaldo, and A. Manissadjian, J. Electron. Mater. 43, 802 (2014). https://doi.org/10.1007/s11664-013-2809-3

    Article  ADS  Google Scholar 

  5. A. M. Itsuno, J. D. Phillips, and S. Velicu, Appl. Phys. Lett. 100, 161102 (2012). https://doi.org/10.1063/1.4704359

    Article  ADS  Google Scholar 

  6. S. Velicu, J. Zhao, M. Morley, A. M. Itsuno, and J. D. Phillips, Proc. SPIE 8268, 82682X (2012). https://doi.org/10.1117/12.904916

    Article  ADS  Google Scholar 

  7. O. Gravrand, F. Boulard, A. Ferron, P. Ballet, and W. Hassis, J. Electron. Mater. 44, 3069 (2015). https://doi.org/10.1007/s11664-015-3821-6

    Article  ADS  Google Scholar 

  8. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, S. A. Dvoretsky, N. N. Mikhailov, G. Yu. Sidorov, and M. V. Yakushev, J. Phys. D: Appl. Phys. 53, 055107 (2019). https://doi.org/10.1088/1361-6463/ab5487

    Article  ADS  Google Scholar 

  9. D. R. Rhiger, E. P. Smith, B. P. Kolasa, J. K. Kim, J. F. Klem, and S. D. Hawkins, J. Electron. Mater. 45, 4646 (2016). https://doi.org/10.1007/s11664-016-4545-y

    Article  ADS  Google Scholar 

  10. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, S. A. Dvoretsky, N. N. Mikhailov, G. Yu. Sidorov, and M. V. Yakushev, Mater. Res. Express 6, 116411 (2019). https://doi.org/10.1088/2053-1591/ab444f

    Article  ADS  Google Scholar 

  11. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, S. A. Dvoretsky, N. N. Mikhailov, G. Yu. Sidorov, and M. V. Yakushev, Semicond. Sci. Technol. 35, 055026 (2020). https://doi.org/10.1088/1361-6641/ab7beb

    Article  ADS  Google Scholar 

  12. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, S. A. Dvoretsky, N. N. Mikhailov, G. Yu. Sidorov, and M. V. Yakushev, Russ. Phys. J. 63, 907 (2020). https://doi.org/10.1007/s11182-020-02117-0

    Article  Google Scholar 

  13. N. D. Akhavan, G. Jolley, G. A. Umana-Membreno, J. Antoszewski, and L. Faraone, J. Electron. Mater. 44, 3044 (2015). https://doi.org/10.1007/s11664-015-3764-y

    Article  ADS  Google Scholar 

  14. E. R. Zakirov, V. G. Kesler, G. Y. Sidorov, I. P. Prosvirin, A. K. Gutakovsky, and V. I. Vdovin, Semicond. Sci. Technol. 34, 065007 (2019). https://doi.org/10.1088/1361-6641/ab1961

    Article  ADS  Google Scholar 

  15. W. E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, J. Electron. Mater. 37, 1406 (2008). https://doi.org/10.1007/s11664-008-0426-3

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation, project no. 19-12-00135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Nesmelov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. Admittance of MIS Structures Based on nBn Systems of Epitaxial HgCdTe for Detection in the 3–5 μm Spectral Range. Tech. Phys. Lett. 47, 629–632 (2021). https://doi.org/10.1134/S1063785021060286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021060286

Keywords:

Navigation