Skip to main content
Log in

High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review)

  • Near-IR Vertical-Cavity Surface-Emitting Lasers (Special Issue)
  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called “vertical-cavity surface-emitting lasers”) under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ∼30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface Emitting Lasers, Ed. by R. Michalzik (Springer, Berlin, 2013).

  2. H. Soda, K. Iga, C. Kitahara, et al., Jpn. J. Appl. Phys. 18, 2329 (1979).

    Article  ADS  Google Scholar 

  3. J. K. Guenter, R. A. Hawthorne, D. N. Granville, et al., Proc. SPIE 2683, 102 (1996).

    Article  ADS  Google Scholar 

  4. D. M. Kuchta, P. Pepeljugoski, and Y. Kwark, in Proceedings of the LEOS Summer Topical Meeting (IEEE, 2001), p. 49.

    Google Scholar 

  5. N. Suzuki, H. Hatakeyama, K. Fukatsu, et al., in Proceedings of the Optical Fiber Communications Conference, Anaheim, USA, 2006, p. OFA4.

    Google Scholar 

  6. K. Yashiki, N. Suzuki, K. Fukatsu, et al., in Proceedings of the Optical Fiber Communications Conference, Anaheim, USA, 2007, p. OMKI.

    Google Scholar 

  7. Y.-C. Chang, C. S. Wang, and L. A. Coldren, Electron. Lett. 43, 1022 (2007).

    Article  Google Scholar 

  8. T. Anan, N. Suzuki, K. Yashiki, et al., in Proceedings of the International Symposium on VCSELs and Integrated Photonics, Tokyo, Japan, 2007, p. E3.

    Google Scholar 

  9. P. Westbergh, J. S. Gustavsson, A. Haglund, et al., Electron. Lett. 44, 907 (2008).

    Article  Google Scholar 

  10. R. Johnson and D. Kuchta, in Proceedings of the Conference on Lasers and Electro-Optics, San Jose, USA, 2008, p. CMW2.

    Google Scholar 

  11. P. Westbergh, J. S. Gustavsson, A. Haglund, et al., Electron. Lett. 45, 366 (2009).

    Article  Google Scholar 

  12. S. A. Blokhin, J. A. Lott, A. Mutig, et al., Electron. Lett. 45, 501 (2009).

    Article  Google Scholar 

  13. P. Westbergh, J. S. Gustavsson, B. Kügel, et al., Proc. SPIE 7952, 79520K (2011).

    Article  Google Scholar 

  14. W. Hofmann, P. Moser, P. Wolf, et al., in Proceedings of the Optical Fiber Communications Conference, Los Angeles, USA, 2011, p. PDPC5.

    Google Scholar 

  15. P. Westbergh, R. Safaisini, E. Haglund, et al., IEEE Photon. Technol. Lett. 25, 768 (2013).

    Article  ADS  Google Scholar 

  16. P. Westbergh, E. P. Haglund, E. Haglund, et al., Electron. Lett. 49, 1021 (2013).

    Article  Google Scholar 

  17. R. S. Tucker, IEEE J. Lightwave Technol. 3, 1180 (1985).

    Article  ADS  Google Scholar 

  18. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

    Google Scholar 

  19. G. P. Agraval, Fiber Optic Communication Systems (Wiley, New York, 1997).

    Google Scholar 

  20. A. K. Dutta, H. Kosaka, K. Kurihara, et al., IEEE J. Lightwave Technol. 16, 870 (1998).

    Article  ADS  Google Scholar 

  21. K. Y. Lau and A. Yariv, IEEE J. Quantum Electron. 21, 121 (1985).

    Article  ADS  Google Scholar 

  22. A. N. Al-Omari and K. L. Lear, IEEE Photon. Technol. Lett. 16, 969 (2004).

    Article  ADS  Google Scholar 

  23. A. N. Al-Omari and K. L. Lear, IEEE Trans. Dielectr. Electr. Insul. 12, 1151 (2005).

    Article  Google Scholar 

  24. K. Kojima, R. A. Morgan, T. Mullally, et al., Electron. Lett. 29, 1771 (1993).

    Article  Google Scholar 

  25. G. Reiner, E. Zeeb, B. Möller, et al., IEEE Photon. Technol. Lett. 7, 730 (1995).

    Article  ADS  Google Scholar 

  26. E. F. Schubert, L. W. Tu, G. J. Zydzik, et al., Appl. Phys. Lett. 60, 466 (1992).

    Article  ADS  Google Scholar 

  27. K. L. Lear and R. P. Schneider, Appl. Phys. Lett. 68 (5), 29 (1996).

    Article  Google Scholar 

  28. M. G. Peters, B. J. Thibeault, D. B. Young, et al., Appl. Phys. Lett. 63, 3411 (1993).

    Article  ADS  Google Scholar 

  29. P. G. Newman, J. Pamulapati, H. Shen, et al., J. Vac. Sci. Technol. B 18, 1619 (2000).

    Article  Google Scholar 

  30. J. Strologas and K. Hess, IEEE Trans. Electron Dev. 51, 506 (2004).

    Article  ADS  Google Scholar 

  31. E. R. Hegblom, D. I. Babic, B. J. Thibeault, et al., Appl. Phys. Lett. 68, 1757 (1996).

    Article  ADS  Google Scholar 

  32. Y.-C. Chang and L. A. Coldren, IEEE J. Sel. Top. Quantum Electron. 15, 704 (2009).

    Article  ADS  Google Scholar 

  33. A. M. Nadtochiy, S. A. Blokhin, A. G. Kuz’menkov, M. V. Maksimov, N. A. Maleev, S. I. Troshkov, N.N. Ledentsov, V. M. Ustinov, A. Mutig, and D. Bimberg, Tech. Phys. Lett. 38, 106 (2012).

    Article  ADS  Google Scholar 

  34. B. M. Hawkins, R. A. Hawthorne, J. K. Guenter, et al., in Proceedings of the 52nd IEEE Electronic Components and Technology Conference (IEEE, 2002), p. 540.

    Google Scholar 

  35. M. Azuchi, N. Jikutani, M. Arai, et al., in Proceedings of the Conference on Lasers and Electro-Optics (USA, Baltimore, 2003), Vol. 1, p. 163.

    Google Scholar 

  36. Y. Ou, J. S. Gustavsson, P. Westbergh, et al., IEEE Photon. Technol. Lett. 21, 1840 (2009).

    Article  ADS  Google Scholar 

  37. A. Larsson, P. Westbergh, J. Gustavsson, et al., Semicond. Sci. Technol. 26, 014017 (2011).

    Article  ADS  Google Scholar 

  38. K. L. Lear, V. M. Hietala, H. Q. Hou, et al., OSA Trends Opt. Photonics Ser. 15, 69 (1997).

    Google Scholar 

  39. K. L. Lear and A. N. Al-Omari, Proc. SPIE 6484, 64840J (2007).

    Article  ADS  Google Scholar 

  40. S. W. Corzine, R. H. Yan, and L. A. Coldren, Appl. Phys. Lett. 57, 2835 (1990).

    Article  ADS  Google Scholar 

  41. I. Suemune, IEEE J. Quantum Electron. 27, 1149 (1991).

    Article  ADS  Google Scholar 

  42. L. F. Lester, S. D. Offsey, B. K. Ridley, et al., Appl. Phys. Lett. 59, 1162 (1991).

    Article  ADS  Google Scholar 

  43. J. D. Ralston, S. Weisser, I. Esquivias, et al., IEEE J. Quantum Electron. 29, 1648 (1993).

    Article  ADS  Google Scholar 

  44. A. Mutig, J. A. Lott, S. A. Blokhin, et al., Appl. Phys. Lett. 97, 151101 (2010).

    Article  ADS  Google Scholar 

  45. S. B. Healy, IEEE J. Quantum Electron. 46, 504 (2010).

    ADS  Google Scholar 

  46. P. Westbergh and J. Gustavsson, IEEE J. Sel. Top. Quantum Electron. 15, 694 (2009).

    Article  ADS  Google Scholar 

  47. Y. Arakawa and A. Yariv, IEEE J. Quantum Electron. 22, 1887 (1986).

    Article  ADS  Google Scholar 

  48. K. Uomi, Jpn. J. Appl. Phys. 29, 81 (1990).

    Article  ADS  Google Scholar 

  49. K. Uomi, T. Mishima, and N. Chinone, Jpn. J. Appl. Phys. 29, 88 (1990).

    Article  ADS  Google Scholar 

  50. T. Takahashi, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 58, 4 (1991).

    Article  ADS  Google Scholar 

  51. Y. Zheng, C.-H. Lin, A. V. Barve, et al., in Proceedings of the IEEE Photonics Conference IPC 2012, Burlingame, CA, Sept. 23–27, 2012 (IEEE, 2012), p. 131.

    Book  Google Scholar 

  52. K.-L. Chi, D.-H. Hsieh, J.-L. Yen, et al., IEEE J. Quantum Electron. 52, 2400607 (2016).

    Article  Google Scholar 

  53. M. Grundmann and D. Bimberg, Phys. Status Solidi A 164, 297 (1997).

    Article  ADS  Google Scholar 

  54. A. E. Zhukov, M. V. Maksimov, and A. R. Kovsh, Semiconductors 46, 1225 (2012).

    Article  ADS  Google Scholar 

  55. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Semiconductors 32, 343 (1998).

    Article  ADS  Google Scholar 

  56. H. Su and L. F. Lester, J. Phys. D: Appl. Phys. 38, 2112 (2005).

    Article  ADS  Google Scholar 

  57. C. Z. Tong, D. W. Xu, S. F. Yoon, et al., in Proceedings of the 2nd IEEE International Conference on Broadband Network and Multimedia Technology IC-BNMT’09 (IEEE, 2009), p. 906.

    Book  Google Scholar 

  58. D. W. Xu, S. F. Yoon, Y. Ding, et al., IEEE Photon. Technol. Lett. 23, 91 (2011).

    Article  ADS  Google Scholar 

  59. Y. Ding, W. J. Fan, D. W. Xu, et al., J. Phys. D: Appl. Phys. 42, 085117 (2009).

    Article  ADS  Google Scholar 

  60. H. Dery and G. Eisenstein, IEEE J. Quantum Electron. 41, 26 (2005).

    Article  ADS  Google Scholar 

  61. D. R. Matthews, H. D. Summers, P. M. Smowton, et al., Appl. Phys. Lett. 81, 4904 (2002).

    Article  ADS  Google Scholar 

  62. M. V. Belousov, N. N. Ledentsov, M. V. Maximov, et al., Phys. Rev. B 51, 14346 (1995).

    Article  ADS  Google Scholar 

  63. A. Mutig, G. Fiol, P. Moser, et al., Electron. Lett. 44, 1345 (2008).

    Article  Google Scholar 

  64. A. Mutig, J. A. Lott, S. A. Blokhin, et al., IEEE J. Sel. Top. Quantum Electron. 17, 1568 (2011).

    Article  ADS  Google Scholar 

  65. A. M. Nadtochiy, S. A. Blokhin, A. Mutig, J. A. Lott, N. N. Ledentsov, L. Ya. Karachinskiy, M. V. Maximov, V. M. Ustinov, and D. Bimber, Semiconductors 45, 679 (2011).

    Article  ADS  Google Scholar 

  66. P. Wolf, P. Moser, G. Larisch, et al., IEEE J. Sel. Top. Quantum Electron. 19, 1701207 (2013).

    Article  ADS  Google Scholar 

  67. J. Tatum, in Proceedings of the Symposium on Broadband Communications for the Internet Era (IEEE, 2001), p. 58.

    Google Scholar 

  68. A. Mutig, G. Fiol, K. Pötschke, et al., IEEE J. Sel. Top. Quantum Electron. 15, 679 (2009).

    Article  ADS  Google Scholar 

  69. M. S. Torre and H. F. Ranea-Sandoval, IEEE J. Quantum Electron. 36, 112 (2000).

    Article  ADS  Google Scholar 

  70. S. A. Blokhin, M. A. Bobrov, N. A. Maleev, et al., Appl. Phys. Lett. 105, 061104 (2014).

    Article  ADS  Google Scholar 

  71. S. A. Blokhin, J. A. Lott, N. N. Ledentsov, et al., Proc. SPIE 8308, 830819 (2011).

    Article  Google Scholar 

  72. A. Mutig, J. A. Lott, S. A. Blokhin, et al., Proc. SPIE 7952, 79520H (2011).

    Article  Google Scholar 

  73. L. Ya. Karachinsky, S. A. Blokhin, I. I. Novikov, et al., Semicond. Sci. Technol. 28, 065010 (2013).

    Article  ADS  Google Scholar 

  74. J. A. Lott, A. S. Payusov, S. A. Blokhin, et al., Phys. Status Solidi C 9, 290 (2012).

    Article  ADS  Google Scholar 

  75. P. Moser, J. A. Lott, and D. Bimberg, IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).

    Article  ADS  Google Scholar 

  76. H. Li, P. Wolf, P. Moser, et al., IEEE J. Sel. Top. Quantum Electron. 21, 1700409 (2015).

    Google Scholar 

  77. E. Haglund, P. Westbergh, J. S. Gustavsson, et al., Electron. Lett. 51, 1096 (2015).

    Article  Google Scholar 

  78. J.-W. Shi, C.-C. Chen, Y.-S. Wu, et al., IEEE J. Quantum Electron. 45, 800 (2009).

    Article  ADS  Google Scholar 

  79. M. P. Tan, S. T. M. Fryslie, J. A. Lott, et al., IEEE Photon. Technol. Lett. 25, 1823 (2013).

    Article  ADS  Google Scholar 

  80. M. Tan, A. M. Kasten, J. D. Sulkin, et al., IEEE J. Sel. Top. Quantum Electron. 19, 4900107 (2013).

    Article  ADS  Google Scholar 

  81. Å. Handlung, J. S. Gustavsson, J. Vukusic, et al., IEEE Photon. Technol. Lett. 16, 368 (2004).

    Article  ADS  Google Scholar 

  82. J. S. Gustavsson, Å. Handlung, J. Bengtsson, et al., IEEE J. Quantum Electron. 40, 607 (2004).

    Article  ADS  Google Scholar 

  83. R. Safaisini, E. Haglund, P. Westbergh, et al., Electron. Lett. 50, 40 (2014).

    Article  Google Scholar 

  84. E. Haglund, Å. Haglund, P. Westbergh, et al., Electron. Lett. 48, 517 (2012).

    Article  Google Scholar 

  85. P. Westbergh, J. S. Gustavsson, B. Kögel, et al., Electron. Lett. 46, 938 (2010).

    Article  Google Scholar 

  86. P. Westbergh, J. S. Gustavsson, B. Kögel, et al., IEEE J. Sel. Top. Quantum Electron. 17, 1603 (2011).

    Article  ADS  Google Scholar 

  87. M. A. Bobrov, S. A. Blokhin, A. G. Kuzmenkov, N. A. Maleev, A. A. Blokhin, Yu. M. Zadiranov, E. V. Nikitina, and V. M. Ustinov, Semiconductors 48, 1657 (2014).

    Article  ADS  Google Scholar 

  88. E. P. Haglund, P. Westbergh, J. S. Gustavsson, et al., IEEE J. Lightwave Technol. 33, 795 (2015).

    Article  ADS  Google Scholar 

  89. J. Wang, C. Ji, D. Soderstrom, T. Jian, et al., Proc. SPIE 7952, 795205 (2011).

    Article  Google Scholar 

  90. M. Osinski and W. Nakwaski, Int. J. High Speed Electron. Syst. 5, 667 (1994).

    Article  Google Scholar 

  91. P. P. Baveja, B. Kögel, P. Westbergh, et al., Opt. Express 19, 15490 (2011).

    Article  ADS  Google Scholar 

  92. Y.-A. Chang, T.-S. Ko, J.-R. Chen, et al., Semicond. Sci. Technol. 21, 1488 (2006).

    Article  ADS  Google Scholar 

  93. J.-W. Shi, J.-C. Yan, J.-M. Wun, et al., IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).

    Article  Google Scholar 

  94. J.-W. Shi, C.-C. Wei, J. Chen, et al., Proc. SPIE 10122, 101220F (2017).

    Article  Google Scholar 

  95. J. Piprek, T. Tröger, B. Schröter, et al., IEEE Photon. Technol. Lett. 10, 81 (1998).

    Article  ADS  Google Scholar 

  96. P. Moser, P. Wolf, A. Mutig, et al., Appl. Phys. Lett. 100, 081103 (2012).

    Article  ADS  Google Scholar 

  97. K. Takaki, S. Imai, S. Kamiya, et al., Proc. SPIE 7952, 795204 (2011).

    Article  Google Scholar 

  98. T. Wipiejewski, D. B. Young, M. G. Peters, et al., Electron. Lett. 31, 279 (1995).

    Article  Google Scholar 

  99. A. N. Al-Omari, G. P. Carey, S. Hallstein, et al., IEEE Photon. Technol. Lett. 18, 1225 (2006).

    Article  ADS  Google Scholar 

  100. Y. Liu, W.-C. Ng, F. Oyafuso, et al., IEE Proc. Optoelectron. 149, 182 (2002).

    Article  Google Scholar 

  101. A. Mutig and D. Bimberg, Adv. Opt. Technol. 2011, 290508 (2011).

    Article  Google Scholar 

  102. P. Moser, J. A. Lott, P. Wolf, et al., Electron. Lett. 50, 1369 (2014).

    Article  Google Scholar 

  103. P. Westbergh, R. Safaisini, E. Haglund, et al., Electron. Lett. 48, 1145 (2012).

    Article  Google Scholar 

  104. E. Haglund, P. Westbergh, J. S. Gustavsson, et al., IEEE J. Lightwave Technol. 34, 269 (2016).

    Article  ADS  Google Scholar 

  105. A. Kasukawa and Y. Kawakita, in Proceedings of the IEEE Photonics Conference IPC 2015, Reston, Virginia, Oct. 4–8, 2015 (IEEE, 2015), p. 585.

    Book  Google Scholar 

  106. D. M. Kuchta, A. V. Rylyakov, F. E. Doany, et al., IEEE Photon. Technol. Lett. 27, 577 (2015).

    Article  ADS  Google Scholar 

  107. N. N. Ledentsov, N. Ledentsov, Jr., M. Agustin, et al., Nanophotonics 6, 813 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Blokhin.

Additional information

Original Russian Text © S.A. Blokhin, N.A. Maleev, M.A. Bobrov, A.G. Kuzmenkov, A.V. Sakharov, V.M. Ustinov, 2018, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 44, No. 1, pp. 7–43.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, S.A., Maleev, N.A., Bobrov, M.A. et al. High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review). Tech. Phys. Lett. 44, 1–16 (2018). https://doi.org/10.1134/S1063785018010054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785018010054

Navigation