Skip to main content
Log in

Anisotropic magnetostrictive metal-polymer composites for functional devices

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

New metal-polymer composites based on mechanochemically synthesized magnetostrictive Fe-Ga phase particles with dimensions of up to 2 μm dispersed and spatially oriented in a polymer matrix have been studied. The polymer matrix for spatial anisotropic stabilization of particles was represented by modified polyurethane (PU). An increase in the magnetostrictive effect was achieved by directed orientation of particles in a magnetic field applied during polymerization of the PU matrix. The spatial anisotropy of the composite has been studied by the methods of conversion Mössbauer spectroscopy with resonant X-ray detection and scanning electron microscopy. It is shown that the mechanochemical synthesis is an effective method of obtaining particles with microstress-enhanced magnetostriction. The use of these particles for the formation of a functional elastomer composite provides a material with significant magnetostrictive effect, which can be several-fold increased due to orientation of particles in an applied magnetic field. The obtained anisotropic magnetostrictive composite is a promising material for the creation of smart functional components of positioning systems, attenuators, and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Z. Lyakhov and T. F. Grigor’eva, Mechanocomposites-Precursors for Creating Materials with Unique Properties (Izd-vo SO RAN, Novosibirsk, 2009) [in Russian].

    Google Scholar 

  2. L. Nicolais and G. Carotenuto, Metal-Polymer Nano-composites (Wiley & Sons, 2005).

    Google Scholar 

  3. J. Atulaismba and A. B. Flatau, Smart Mater. Struct. 20, 043001 (2011).

    Article  ADS  Google Scholar 

  4. S. Rafique, J. R. Cullen, M. Wuttig, and J. Cui, J. Appl. Phys. 95, 6939 (2004).

    Article  ADS  Google Scholar 

  5. E. Hristoforou and A. Ktena, J. Magn. Magn. Mater. 316, 372 (2007).

    Article  ADS  Google Scholar 

  6. T. Yu. Kiseleva, E. E. Levin, A. A. Novakova, et al., Proceedings of the 10th Int. Workshop “Optimization of Composition, Structure and Properties of Metals, Oxides, etc.” (Chernogolovka, 2011), pp. 1–9.

  7. T. F. Grigor’eva, T. Yu. Kiseleva, S. A. Kovaleva, A. A. Novakova, S. V. Tsybulya, A. P. Barinova, and N. Z. Lyakhov, Phys. Met. Metallogr. 113, 575 (2012).

    Article  ADS  Google Scholar 

  8. A. A. Novakova, A. A. Kiselev, R. N. Kuz’min, and G. V. Sidorova, JETP Lett. 43, 415 (1986).

    ADS  Google Scholar 

  9. A. A. Novakova, E. V. Smirnov, and T. S. Gendler, J. Magn. Magn. Mater. 300, e354 (2006).

    Article  ADS  Google Scholar 

  10. A. A. Novakova, O. V. Agladze, R. S. Gvozdover, et al., J. Surf. Investig. X-ray, Synchrotron Neutron Tech. 16, 1863 (2001).

    Google Scholar 

  11. Yu. L. Raikher and O. V. Stolbov, Vychisl. Mekh. Splosh. Sred 2(2), 85 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Kiseleva.

Additional information

Original Russian Text © T.Yu. Kiseleva, S.I. Zholudev, I.A. Il’inykh, A.A. Novakova, 2013, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 39, No. 24, pp. 71–80.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiseleva, T.Y., Zholudev, S.I., Il’inykh, I.A. et al. Anisotropic magnetostrictive metal-polymer composites for functional devices. Tech. Phys. Lett. 39, 1109–1113 (2013). https://doi.org/10.1134/S1063785013120201

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785013120201

Keywords

Navigation