Skip to main content
Log in

Structural Properties and Composition of Graphite-Like Carbon Films Obtained by Pulsed Laser Deposition

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Structure and composition of graphite-like carbon films obtained by pulsed laser deposition in an inert gas atmosphere using sacrificial carbon tapes are investigated. The deposited films are studied using X-ray diffraction, photoelectron spectroscopy, and Raman spectroscopy. X-ray diffraction analysis shows that the obtained films have a structure characteristic of turbostratic carbon and reduced graphene oxide. Analysis of the photoelectron spectra allows us to draw a conclusion about the significant decrease of oxygen and hydrogen content in the films compared to the target material, as well as significant diminution of the content of the sp3-phase. Using Raman spectroscopy, it is shown that carbon films have characteristic features of graphite/graphene and a two-dimensional (turbostratic) structure with characteristic sizes of sp2-crystallites of the order of 15–18 nm depending on the density of laser pulse energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Huang, X. Zhang, P. Keb, and A. Wang, Appl. Surf. Sci. 283, 321 (2013). https://doi.org/10.1016/j.apsusc.2013.06.109

    Article  ADS  Google Scholar 

  2. C. Greco, U. Cosentino, D. Pitea, G. Moro, S. Santangelo, S. Patane, M. D’Arienzo, M. Fiore, F. Morazzoni, and R. Ruffo, Phys. Chem. Chem. Phys. 21, 6021 (2019). https://doi.org/10.1039/C8CP07023G

    Article  Google Scholar 

  3. Y. Bleu, F. Bourquard, T. Tite, A.-S. Loir, C. Maddi, C. Donnet, and F. Garrelie, Front. Chem. 6, 572 (2018). https://doi.org/10.3389/fchem.2018.00572

    Article  ADS  Google Scholar 

  4. K. Ihara, H. Numata, F. Nihey, R. Yuge, and H. Endoh, Appl. Nano Mater. 2 (7), 4286 (2019). https://doi.org/10.1021/acsanm.9b00746

    Article  Google Scholar 

  5. M. K. Rabchinskii, A. T. Dideikin, D. A. Kirilenko, M. V. Baidakova, V. V. Shnitov, F. Roth, S. V. Konyakhin, N. A. Besedina, S. I. Pavlov, R. A. Kuricyn, N. M. Lebedeva, P. N. Brunkov, and A. Ya. Vul’, Sci. Rep. 8, 14154 (2018). https://doi.org/10.1038/s41598-018-32488-x

    Article  ADS  Google Scholar 

  6. J. Robertson, Prog. Solid State Chem. 21, 199 (1991). https://doi.org/10.1016/0079-6786(91)90002-H

    Article  Google Scholar 

  7. A. M. Popov, G. N. Shumkin, and N. G. Nikishin, Comput. Nanotechnol. 2, 13 (2014).

    Google Scholar 

  8. J. Y. Huang, S. Chen, Z. F. Ren, G. S. Chen, and M. S. Dresselhaus, Nano Lett. 6, 1699 (2006). https://doi.org/10.1021/nl0609910

    Article  ADS  Google Scholar 

  9. S. Annas, Proc. 53rd Electronic Components and Technology Conf., (IEEE, New Orleans, 2003), p. 1691. https://doi.org/10.1109/ECTC.2003.1216529

  10. H. Birol, T. Maeder, and P. Ryser, J. Micromech. Microeng. 17, 50 (2007). https://doi.org/10.1088/0960-1317/17/1/007

    Article  ADS  Google Scholar 

  11. T. N. Lambert, C. C. Luhrs, C. A. Chavez, S. Wakelandb, M. T. Brumbachc, and T. M. Alamd, Carbon 48, 4081 (2010). https://doi.org/10.1016/j.carbon.2010.07.015

    Article  Google Scholar 

  12. P. Blake, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, and E. W. Hill, Appl. Phys. Lett. 91, 063124 (2007). https://doi.org/10.1063/1.2768624

    Article  ADS  Google Scholar 

  13. C. L. Marquardt, R. T. Williams, and D. J. Nagel, Mater. Res. Soc. 38, 325 (1985). https://doi.org/10.1557/PROC-38-325

    Article  Google Scholar 

  14. A. Sikora, F. Garrelie, C. Donnet, A. S. Loir, J. Fontaine, J. C. Sanchez-Lopez, and T. C. Rojas, J. Appl. Phys. 108, 113516 (2010). https://doi.org/10.1063/1.3510483

    Article  ADS  Google Scholar 

  15. K. P. Acharya, H. Khatri, S. Marsillac, B. Ullrich, P. Anzenbacher, and M. Zamkov, Appl. Phys. Lett. 97, 201108 (2010). https://doi.org/10.1063/1.3518481

    Article  ADS  Google Scholar 

  16. I. Kumar and A. Khare, Appl. Surf. Sci. 317, 1004 (2014). https://doi.org/10.1016/j.apsusc.2014.08.185

    Article  ADS  Google Scholar 

  17. S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, Laser Phys. Lett. 11, 096001 (2014). https://doi.org/10.1088/1612-2011/11/9/096001

    Article  ADS  Google Scholar 

  18. C12 Advanced Technologies Application Notes: LTCC Carbon Tape (TCS-CARB-1). http://www.c12materials.com

  19. J. J. Gaumet, A. Wakisaka, Y. Shimizu, and Y. Tamori, J. Chem. Soc. Faraday Trans. 89 (11), 1667 (1993). https://doi.org/10.1039/FT9938901667

    Article  Google Scholar 

  20. R. E. Franklin, Acta Crystallogr. 3, 107 (1950). https://doi.org/10.1107/S0365110X50000264

    Article  Google Scholar 

  21. M. Pawlyta, J.-N. Rouzaud, and S. Duber, Carbon 84, 479 (2015). https://doi.org/10.1016/j.carbon.2014.12.030

    Article  Google Scholar 

  22. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martinez-Alonso, and J. M. D. Tascon, J. Mater. Chem. 8, 2875 (1998). https://doi.org/10.1039/A805841E

    Article  Google Scholar 

  23. N. E. S. Sazali, M. Deraman, R. Omar, M. A. R. Othman, M. Suleman, S. A. Shamsudin, N. S. M. Tajuddin, M. F. Y. M. Hanappi, E. Hamdan, N. S. M. Nor, and N. H. Basri, AIP Conf. Proc. 1784, 040009 (2016). https://doi.org/10.1063/1.4966795

  24. S. Navalon, J. R. Herance, M. Alvaro, and H. Garcia, Mater. Horiz. 5, 363 (2018). https://doi.org/10.1039/C8MH00066B

    Article  Google Scholar 

  25. J. Robertson, Mater. Sci. Eng., R 37, 129 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0

  26. T. Xu, S. Yang, J. Lu, Q. Xue, J. Li, W. Guo, and Y. Sun, Diamond Relat. Mater. 10, 1441 (2001). https://doi.org/10.1016/S0925-9635(00)00500-8

    Article  ADS  Google Scholar 

  27. J. R. Rani, J. Lim, J. Oh, D. Kim, D. Lee, J.-W. Kim, H. S. Shin, J. H. Kim, and S. C. Jun, RSC Adv. 3, 5926 (2013). https://doi.org/10.1039/C3RA00028A

  28. M. K. Rabchinskii, A. T. Dideikin, D. A. Kirilenko, M. V. Baidakova, V. V. Shnitov, F. Roth, S. V. Ko-nyakhin1, N. A. Besedina, S. I. Pavlov, R. A. Kuricyn, N. M. Lebedeva, P. N. Brunkov, and A. Ya. Vul’, Sci. Rep. 8, 14154 (2018). https://doi.org/10.1038/s41598-018-32488-x

    Article  ADS  Google Scholar 

  29. L. Chen, Zh. Xu, J. Li, B. Zhou, M. Shan, Y. Li, L. Liu, B. Li, and J. Niu, RSC Adv. 4, 1025 (2014). https://doi.org/10.1039/C3RA46203J

  30. J. F. Watts and J. Wilstenholme, An Introduction to Surface Analysis by XPS and AES (Wiley, Chichester, 2003).

    Book  Google Scholar 

  31. E. D. Briggs and M. P. Seach, Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (Wiley, Chichester, 1983).

    Google Scholar 

  32. V. I. Nefedov, X-Ray Photoelectron Spectroscopy of Chemical Compounds: Handbook (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  33. N. Kumar, R. Ramadoss, A. T. Kozakov, S. K. Jothiramalingam, S. Dash., A. K. Tyagi, N. H. Tai, and I-Nan Lin, J. Phys. D: Appl. Phys. 46, 275501 (2013). https://doi.org/10.1088/0022-3727/46/27/275501

    Article  Google Scholar 

  34. P. Piecuch, J. Maruani, G. Delgado-Barrio, and S. Wilson, Advances in the Theory of Atomic and Molecular Systems, Dynamics, Spectroscopy, Clusters and Nanostructures (Springer, Dordrecht, 2009). https://doi.org/10.1007/978-90-481-285-0

  35. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  ADS  Google Scholar 

  36. A. C. Ferrari, Solid State Commun. 143, 47 (2007). https://doi.org/10.1016/j.ssc.2007.03.052

    Article  ADS  Google Scholar 

  37. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorioa, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007). https://doi.org/10.1039/B613962K

    Article  Google Scholar 

  38. A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013). https://doi.org/10.1038/nnano.2013.46

    Article  ADS  Google Scholar 

  39. C. Beny-Bassez and J. N. Rouzaud, Scanning Electron Microsc. 1, 119 (1985).

    Google Scholar 

  40. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon 43, 1731 (2005). https://doi.org/10.1016/j.carbon.2005.02.018

    Article  Google Scholar 

  41. F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 (1970). https://doi.org/10.1063/1.1674108

    Article  ADS  Google Scholar 

  42. L. G. Cancado, K. Takai, T. Enoki, and M. Endo, Appl. Phys. Lett. 88, 163106 (2006). https://doi.org/10.1063/1.2196057

    Article  ADS  Google Scholar 

  43. A. C. Ferrari and J. Robertson, Phys. Rev. B 64, 075414 (2001). https://doi.org/10.1103/PhysRevB.64.075414

    Article  ADS  Google Scholar 

  44. A. C. Ferrari, S. E. Rodil, and J. Robertson, Phys. Rev. B 67, 155306 (2003). https://doi.org/10.1103/PhysRevB.67.155306

    Article  ADS  Google Scholar 

  45. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi, Nano Lett. 12 (8), 3925 (2012). https://doi.org/10.1021/nl300901a

    Article  ADS  Google Scholar 

  46. L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, N. L. Speziali, A. Jorio, and M. A. Pimenta, Carbon 46, 272 (2008). https://doi.org/10.1016/j.carbon.2007.11.015

    Article  Google Scholar 

  47. H. Wilhelm, M. Lelaurain, and E. Mc Rae, J. Appl. Phys. 84, 6552 (1998). https://doi.org/10.1063/1.369027

    Article  ADS  Google Scholar 

  48. A. Das, B. Chakraborty, and A. K. Sood, Bull. Mater. Sci. 31, 579 (2008). https://doi.org/10.1007/s12034-008-0090-5

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. A.T. Kozakov (Research Institute of Physics, Southern Federal University) for help in performing experiments using X-ray photoelectron spectroscopy, as well as M.V. Avramenko (Department of Nanotechnology, Southern Federal University) for obtaining the Raman spectra of carbon films on aluminum oxide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ershov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, I.V., Prutsakova, N.V., Holodova, O.M. et al. Structural Properties and Composition of Graphite-Like Carbon Films Obtained by Pulsed Laser Deposition. Tech. Phys. 66, 580–587 (2021). https://doi.org/10.1134/S1063784221040071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221040071

Navigation