Skip to main content
Log in

The Giant Magnetoresistance Effect in Microwave Reflection from (CoFe)/Cu Superlattices

  • PHYSICS OF NANOSTRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Experiments on the giant magnetoresistance effect observed in microwave reflection have been conducted in the frequency range of 26–38 GHz on (CoFe)/Cu superlattices exhibiting giant magnetoresistance. The amount of the effect has been determined (up to +3% maximum), and its magnetic field dependence has been found. The microwave reflection coefficient versus magnetic field dependence has been calculated. The measured variation of the reflection coefficient has turned out to be greater than calculated values. This discrepancy is associated with the fact that a superlattice is approximated by a homogeneous plate in calculations. The frequency dependence of the giant magnetoresistance effect in microwave reflection has been observed. It is explained by the influence of the impedance of a waveguide in which samples are placed to take measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Z. Frait, P. Sturć, K. Temst, Y. Bruynseraede, and I. Vavra, Solid State Commun. 112, 569 (1999).

    Article  ADS  Google Scholar 

  2. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, and E. A. Kuznetsov, Tech. Phys. Lett. 33 (9), 771 (2007). https://doi.org/10.1134/S1063785007090179

    Article  ADS  Google Scholar 

  3. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, A.  M.  Burkhanov, and E. A. Kuznetsov, Phys. Met. Metallogr. 96, 291 (2003).

    Google Scholar 

  4. D. V. Perov and A. B. Rinkevich, Phys. Met. Metallogr. 120 (4), 333 (2019). https://doi.org/10.1134/S0031918X19040100

    Article  ADS  Google Scholar 

  5. D. P. Belozorov, V. N. Derkach, S. V. Nedukh, A. G. Ravlik, S. T. Roschenko, I. G. Shipkova, S. I. Tarapov, and F. Yildiz, Int. J. Infrared Millimeter Waves 22 (11), 1669 (2001). https://doi.org/10.1023/A:1015060515794

    Article  Google Scholar 

  6. D. E. Endean, J. N. Heyman, S. Maat, and E. Dan Dahlberg, Phys. Rev. B 84 (21), 212405 (2011). https://doi.org/10.1103/PhysRevB.84.212405

    Article  ADS  Google Scholar 

  7. J. C. Jackuet and T. Valet, Mater. Res. Soc. 384, 477 (1995). https://doi.org/10.1557/PROC-384-477

    Article  Google Scholar 

  8. T. Rausch, T. Szczurek, and M. Schlesinger, J. Appl. Phys. 85 (1), 314 (1999). https://doi.org/10.1063/1.369448

    Article  ADS  Google Scholar 

  9. A. B. Rinkevich, Ya. A. Pakhomov, E. A. Kuznetsov, A. S. Klepikova, M. A. Milyaev, L. I. Naumova, and V. V. Ustinov, Tech. Phys. Lett. 45 (2), 225 (2019). https://doi.org/10.1134/S1063785019030143

    Article  ADS  Google Scholar 

  10. J. Dubowik, F. Stobiecki, and I. Gościańska, Czech. J. Phys. 52 (2), 227 (2002). https://doi.org/10.1023/A:1014475830396

    Article  ADS  Google Scholar 

  11. M. A. Milyaev, L. I. Naumova, and V. V. Ustinov, Phys. Met. Metallogr. 119 (12), 1162 (2018). https://doi.org/10.1134/S0031918X1812013X

    Article  ADS  Google Scholar 

  12. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC, Boca Raton, 1996).

    Google Scholar 

  13. R. L. Ramey, W. J. Kitchen, Jr., J. M. Lloyd, and H. S.Landes, J. Appl. Phys. 39 (8), 3883 (1968). https://doi.org/10.1063/1.1656870

    Article  ADS  Google Scholar 

  14. R. L. Ramey and T. S. Lewis, J. Appl. Phys. 39 (3), 1747 (1968). https://doi.org/10.1063/1.1656424

    Article  ADS  Google Scholar 

  15. N. A. Semenov, Technical Electrodynamics (Svyaz’, Moscow, 1973) [in Russian].

    Google Scholar 

  16. V. V. Ustinov, A. B. Rinkevich, I. G. Vazhenina, and M. A. Milyaev, J. Exp. Theor. Phys. 131 (1), 139 (2020). https://doi.org/10.1134/S1063776120070171

    Article  ADS  Google Scholar 

  17. W. Pan and X. Zhang, Int. J. Infrared Millimeter Waves 27 (3), 455 (2006). https://doi.org/10.1007/s10762-006-9054-2

    Article  ADS  Google Scholar 

  18. S. Lucyszyn, Int. J. Infrared Millimeter Waves 28 (3), 263 (2007). https://doi.org/10.1007/s10762-007-9204-1

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank M.V. Makarova and E.A. Kravtsov for X-ray investigations of nanostructures performed in the Center for Collective Use at the Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

Funding

The investigations were carried out in the framework of project no. AAAA-A18-118020290104-2 “Spin” and project no. AAAA-A19-119012990095-0 “Funktsiya.” Section 2 was supported by the Russian Science Foundation, grant no. 17-12-01002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Rinkevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rinkevich, A.B., Kuznetsov, E.A., Perov, D.V. et al. The Giant Magnetoresistance Effect in Microwave Reflection from (CoFe)/Cu Superlattices. Tech. Phys. 66, 298–304 (2021). https://doi.org/10.1134/S1063784221020171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221020171

Navigation