Skip to main content
Log in

Parameters of Iron and Aluminum Nano- and Micropowder Activity upon Oxidation in Air under Microwave Irradiation

  • Physical Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Iron nanopowders and iron and aluminum micropowders exposed to microwave radiation with a frequency of 9.4 GHz and a power density of 80 W/cm2 at a pulse repetition rate of 400 Hz have been investigated. According to the results of differential thermal analysis, the microwave radiation caused nonmonotonic changes in the thermal properties of the A1 and Fe powders. After irradiation of the iron nanopowder, the temperature of the onset of its oxidation increased from 150.01 to 158.75°C; in the case of the micropowder, the temperature nonmonotonically changed from 150.00 to 275.38°C. The specific heat of oxidation of the Fe nanopowder increased by 17.3% at maximum, while in the Fe micropowder the maximum attained increase was 13%. For the Al micropowder, the maximum increase in the specific heat of oxidation was found to be 59.7%. Microwave irradiation leads to the formation of electron avalanches, which reduce metal ions in their oxides. At the same time, at certain irradiation doses the generated electron flows oxidize the reduced metals, which is reflected in the nonmonotonic variation in the properties of a material. The increase in the specific heat of oxidation is related to the participation of energy-saturated states of the metals in the oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ellern, Military and Civilian Pyrotechnics (Chemical Publ., 1968).

    Google Scholar 

  2. A. A. Gromov and U. Teipel, Metal Nanopowders: Production, Characterization, and Energetic Applications (Wiley, Weinheim, 2014).

    Book  Google Scholar 

  3. R. A. Andrievski, Phys.-Usp. 57, 945 (2014).

    Article  ADS  Google Scholar 

  4. I. D. Morokhov, V. P. Petinov, L. I. Trusov, and V. F. Petrunin, Sov. Phys. Usp. 24, 295 (1981).

    Article  ADS  Google Scholar 

  5. V. M. Mikoushkin and A. S. Kriukov, Tech. Phys. Lett. 42, 337 (2016).

    Article  ADS  Google Scholar 

  6. A. P. Il’in, L. O. Root, and A. V. Mostovshchikov, Tech. Phys. 57, 1178 (2012).

    Article  Google Scholar 

  7. J. Sun, W. Wang, and Q. Yue, Materials 9, 231 (2016).

    Article  ADS  Google Scholar 

  8. A. N. Didenko, Microwave Energy Engineering: Theory and Practice (Nauka, Moscow, 2003).

    Google Scholar 

  9. A. V. Mostovshchikov, A. P. Il’in, P. Yu. Chumerin, Yu. G. Yushkov, V. A. Vaulin, and B. A. Alekseev, Tech. Phys. Lett. 42, 344 (2016).

    Article  ADS  Google Scholar 

  10. V. G. Syrkin, Metal Carbonyls (Khimiya, Moscow, 1983).

    Google Scholar 

  11. W. W. Wendlandt, Thermal Methods of Analysis (Wiley, New York, 1974).

    Google Scholar 

  12. V. V. Borisovskii, A. A. Vorob’ev, E. M. Golovchanskii, and E. K. Zavadovskaya, Izv. Tomsk. Politekh. Inst. 247, 6 (1977).

    Google Scholar 

  13. A. V. Mostovshchikov, A. P. Ilyin, I. S. Egorov, and D. V. Ismailov, Key Eng. Mater. 712, 60 (2016).

    Article  Google Scholar 

  14. F. Brecelj and M. Mozetic, Vacuum 40, 177 (1990).

    Article  ADS  Google Scholar 

  15. N. Standish and H. Worner, J. Microwave Power Electromagn. Energy 25, 177 (1990).

    Article  Google Scholar 

  16. J. E. Bonevich and L. D. Marks, Ultramicroscopy 35, 161 (1991).

    Article  Google Scholar 

  17. D. J. Smith, M. R. McCartney, and L. A. Bursill, Ultramicroscopy 23, 299 (1987).

    Article  Google Scholar 

  18. S. P. Bardakhanov, A. P. Zav’yalov, K. V. Zobov, et al., Vestn. Novosib. Gos. Univ., Ser. Fiz. 4 (1), 75 (2009).

    Google Scholar 

  19. Vacuum Microwave Electronics: Reviews (Inst. Prikl. Fiz. Ross. Akad. Nauk, Nizhny Novgorod, 2002).

  20. V. N. Nikiforov, A. N. Ignatenko, and V. Yu. Irkhin, Bull. Russ. Acad. Sci.: Phys. 78, 1081 (2014).

    Article  Google Scholar 

  21. L. V. Gurvich et al., Energy of Chemical Bond Cleavage. Ionization Potentials and Electron Affinity (Nauka, Moscow, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mostovshchikov.

Additional information

Original Russian Text © A.V. Mostovshchikov, A.P. Il’in, P.Yu. Chumerin, Yu.G. Yushkov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 8, pp. 1259–1263.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostovshchikov, A.V., Il’in, A.P., Chumerin, P.Y. et al. Parameters of Iron and Aluminum Nano- and Micropowder Activity upon Oxidation in Air under Microwave Irradiation. Tech. Phys. 63, 1223–1227 (2018). https://doi.org/10.1134/S1063784218080133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218080133

Navigation