Skip to main content
Log in

Magnetoelastic Waves in Submicron Yttrium–Iron Garnet Films Manufactured by Means of Ion-Beam Sputtering onto Gadolinium–Gallium Garnet Substrates

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A series of equidistant oscillations have been revealed in the transmission spectrum and dispersion law of Damon–Eshbach surface magnetostatic waves (SMSWs) propagating in submicron (200-nm) yttrium–iron garnet (YIG) films manufactured by means of ion-beam sputtering onto gadolinium–gallium garnet (GGG) substrates. These oscillations correspond to the excitation of magnetoelastic waves in the YIG–GGG structure at frequencies of resonant interaction between the surface magnetostatic waves and the elastic shear modes of the wave-guiding YIG–GGG structure. The obtained results show that the studied YIG films are characterized by an efficient magnetoelastic coupling between their spin and elastic subsystems and the matching of acoustic impedances at the YIG–GGG interface, thus providing the possibility to consider the ion-beam sputtering of YIG films onto GGG substrates as a promising technology for the creation of magnonic and straintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. N. Slavin, et al., Phys.-Usp. 58, 1002 (2015).

    Article  ADS  Google Scholar 

  2. A. A. Serga, A. V. Chumak, and B. Hillebrands, J. Phys. D 43, 264002 (2010).

    Article  ADS  Google Scholar 

  3. Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett. 88, 143503 (2006).

    Article  ADS  Google Scholar 

  4. A. B. Ustinov, Yu. K. Fetisov, S. V. Lebedev, and G. Srinivasan, Tech. Phys. Lett. 36, 166 (2010).

    Article  ADS  Google Scholar 

  5. H. Yu, O. d’Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, R. Huber, I. Stasinopoulos, and D. Grundler, Sci. Rep. 4, 6848 (2014). doi 10.1038/srep06848

    Article  ADS  Google Scholar 

  6. H. L. Wang, C. H. Du, Y. Pu, R. Adur, P. C. Hammel, and F. Y. Yang, Phys. Rev. B 88, 100406(R) (2013).

    Article  ADS  Google Scholar 

  7. M. Evelt, V. E. Demidov, V. Bessonov, S. O. Democritov, J. L. Prieto, M. Munoz, J. B. Youseff, V. V. Naletov, G. de Loubens, O. Klein, M. Collet, K. Garcia-Hermandez, P. Bortolotti, V. Cros, and A. Anane, Appl. Phys. Lett. 108, 172406 (2016).

    Article  ADS  Google Scholar 

  8. J. Lustikova, Y. Shiomi, Z. Qiu, T. Kikkawa, R. Iguchi, K. Uchida, and E. Saitoh, J. Appl. Phys. 116, 153902 (2014).

    Article  ADS  Google Scholar 

  9. Y. M. Kang, S. H. Wee, S. I. Baik, S. G. Min, S. C. Yu, S. H. Moon, Y. W. Kim, and S. I. Yoo, J. Appl. Phys. 97, 10A319 (2005).

    Article  Google Scholar 

  10. A. I. Stognij, L. V. Lutsev, and V. E. Bursian, J. Appl. Phys. 118, 023905 (2015).

    Article  ADS  Google Scholar 

  11. V. Sakharov, Y. Khivintsev, S. Vysotsky, V. Shadrov, A. Stognij, and Y. Filimonov, Proc. 20th Int. Conf. on Magnetism, Barcelona, Spain, 2015, p. 1546.

    Google Scholar 

  12. A. Stognij, L. Lutsev, N. Novitskii, A. Bespalov, O. Golikova, V. Ketsko, R. Gieniusz, and A. Maziewski, J. Phys. D 48, 485002 (2015).

    Article  Google Scholar 

  13. F. W. Aldbea, N. I. Ahmad, N. B. Ibrahim, and M. Yahya, J. Sol-Gel Sci. Technol. 71, 31 (2014).

    Article  Google Scholar 

  14. C. L. Jermain, H. Paik, S. V. Aradhya, R. A. Buhrman, D. G. Schlom, and D. C. Ralph, Appl. Phys. Lett. 109, 192408 (2016). doi 10.1063/1.4967695

    Article  ADS  Google Scholar 

  15. A. Kirihara, Y. Kajiwara, M. Ishida, Y. Nakamura, T. Manako, E. Saitoh, and S. Yorozu, Nat. Mater. 11, 686 (2012).

    Article  ADS  Google Scholar 

  16. V. K. Sakharov, Y. V. Khivintsev, S. L. Vysotskii, A. I. Stognij, and Y. A. Filimonov, IEEE Magn. Lett 8, 3704804 (2017).

    Article  Google Scholar 

  17. V. K. Sakharov, Yu. V. Khivintsev, S. L. Vysotskii, A. I. Stognij, G. M. Dudko, Yu. A. Filimonov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 25 (1), 35 (2017).

    Google Scholar 

  18. A. Gulyaev, P. E. Zil’berman, G. T. Kazakov, V. G. Sysoev, V. V. Tikhonov, Yu. A. Filimonov, B. P. Nam, and A. S. Khe, JETP Lett. 34, 477 (1981).

    ADS  Google Scholar 

  19. G. T. Kazakov, V. V. Tikhonov, and P. E. Zil’berman, Fiz. Tverd. Tela 25, 2307 (1983).

    Google Scholar 

  20. A. S. Andreev, P. E. Zil’berman, V. B. Kravchenko, Yu. F. Ogrin, A. G. Temiryazev, and L. M. Filimonova, Pis’ma Zh. Tekh. Fiz. 10 (2), 90 (1984).

    Google Scholar 

  21. G. T. Kazakov, I. M. Kotelyanskii, A. V. Maryakhin, Yu. A. Filimonov, and Yu. V. Khivintsev, J. Commun. Technol. Electron. 49, 568 (2004).

    Google Scholar 

  22. A. I. Stognij, V. V. Tokarev, and Yu. N. Mitin, Mater. Res. Soc. Symp. Proc. 236, 331 (1992).

    Article  Google Scholar 

  23. G. M. Dudko, G. T. Kazakov, A. G. Sukharev, Yu. A. Filimonov, and I. V. Shein, Radiotekh. Elektron. 35, 966 (1990).

    Google Scholar 

  24. Yu. V. Khivintsev, Yu. A. Filimonov, and S. A. Nikitov, Appl. Phys. Lett. 106, 052407 (2015).

    Article  ADS  Google Scholar 

  25. R. W. Damon and J. R. Eshbach, J. Phys. Chem. Solids 19, 308 (1961). doi 10.1016/0022–3697(61)90041-5

    Article  ADS  Google Scholar 

  26. W. Schilz, Philips Res. Rep. 28, 50 (1973).

    Google Scholar 

  27. A. S. Bugaev, Yu. V. Gulyaev, P. E. Zil’berman, and Yu. A. Filimonov, Fiz. Tverd. Tela 23, 2647 (1981).

    Google Scholar 

  28. A. S. Bugaev, Yu. V. Gulyaev, P. E. Zil’berman, and Yu. A. Filimonov, Radiotekh. Elektron. 27, 1979 (1982).

    Google Scholar 

  29. Yu. V. Gulyaev and P. E. Zil’berman, Russ. Phys. J. 31, 860 (1988).

    Google Scholar 

  30. R. C. Lecraw and R. L. Comstock, in Physical Acoustics, Ed. by W. P. Mason (Academic, 1965), Vol. 3B, p. 127.

    Article  Google Scholar 

  31. W. Strauss, in Physical Acoustics, Ed. by W. P. Mason (Academic, 1968), Vol. 4B, p. 211.

    Article  Google Scholar 

  32. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin Waves (Nauka, Moscow, 1967).

    Google Scholar 

  33. Yu. A. Filimonov and Yu. V. Khivintsev, J. Commun. Technol. Electron. 47, 910 (2002).

    Google Scholar 

  34. N. I. Polzikova, S. G. Alekseev, I. L. Pyatakin, I. M. Kotelyanskii, V. A. Luzanov, and A. P. Orlov, AIP Adv. 6, 056306 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Filimonov.

Additional information

Original Russian Text © Yu.V. Khivintsev, V.K. Sakharov, S.L. Vysotskii, Yu.A. Filimonov, A.I. Stognii, S.A. Nikitov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 7, pp. 1060–1066.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khivintsev, Y.V., Sakharov, V.K., Vysotskii, S.L. et al. Magnetoelastic Waves in Submicron Yttrium–Iron Garnet Films Manufactured by Means of Ion-Beam Sputtering onto Gadolinium–Gallium Garnet Substrates. Tech. Phys. 63, 1029–1035 (2018). https://doi.org/10.1134/S1063784218070162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218070162

Navigation