Skip to main content
Log in

Simulation of Properties of Images with Atomic Resolution in a Scanning Probe Microscope

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A method for simulation of images in a scanning probe microscope (SPM) using simultaneous wavelet transform and median filtering is proposed. The wavelet transform with the fourth-order Daubechies kernel is used. Such a transform makes it possible to select details of different scales in the SPM image and, hence, study fractal properties of surfaces. Simulation is used to show that ultrahigh (atomic) resolution is possible in SPM provided that the size of the contact region in the probe–sample system is significantly greater than atomic size and the lattice atoms are randomly distributed. Contrast inversion in the SPM images in the multiscan mode is interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. H. Davies, P. Hyldgaard, S. Hershfield, and J. W. Wilkins, Phys. Rev. B 46, 9620 (1992).

    Article  ADS  Google Scholar 

  2. H. A. Mizes, S. Park, and W. A. Harrison, Phys. Rev. B 36, 4491 (1987).

    Article  ADS  Google Scholar 

  3. M. E. Flatte and J. M. Byers, Phys. Rev. B 53, 10536 (1996).

    Article  ADS  Google Scholar 

  4. S. Sh. Rekhviashvili, B. A. Rozenberg, and V. V. Dremov, JETP Lett. 88, 772 (2008).

    Article  ADS  Google Scholar 

  5. F. F. Abraham, I. P. Batra, and S. Ciraci, Phys. Rev. Lett. 60, 1314 (1988).

    Article  ADS  Google Scholar 

  6. K. Kobayashi and M. Tsukada, J. Vac. Sci. Technol. A 8, 170 (1990).

    Article  ADS  Google Scholar 

  7. N. Isshiki, K. Kobayashi, and M. Tsukada, Surf. Sci. 238, L439 (1990).

    Article  ADS  Google Scholar 

  8. S. Watanaba, M. Aono, and M. Tsukada, Phys. Rev. B 44, 8330 (1991).

    Article  ADS  Google Scholar 

  9. E. Tekman and S. Ciraci, J. Phys.: Condens. Matter 3, 2613 (1991).

    ADS  Google Scholar 

  10. A. V. Pokropivnyi, V. V. Pokropivnyi, and V. V. Skorokhod, Tech. Phys. 42, 1435 (1997).

    Article  Google Scholar 

  11. S. Sh. Rekhviashvili, Mat. Model. 15 (2), 62 (2003).

    Google Scholar 

  12. S. Sh. Rekhviashvili, Tech. Phys. Lett. 28, 237 (2002).

    Article  ADS  Google Scholar 

  13. N. M. Astaf’eva, Phys.-Usp. 39, 1085 (1996).

    Article  Google Scholar 

  14. V. P. D’yakonov, Wavelets. From Theory to Practice (Solon-R, Moscow, 2002).

    Google Scholar 

  15. W. K. Pratt, Digital Image Processing (Wiley, 1978).

    MATH  Google Scholar 

  16. V. L. Mironov, Scanning Probe Microscopy Basics (Tekhnosfera, Moscow, 2005).

    Google Scholar 

  17. G. V. Dedkov and S. Sh. Rekhviashvili, Tech. Phys. 44, 982 (1999).

    Article  Google Scholar 

  18. V. K. Malinovskii, Phys. Solid State 41, 725 (1999).

    Article  ADS  Google Scholar 

  19. A. A. Potapov, Fractals in Radiophysics and Radar Ranging (Universitetskaya Kniga, Moscow, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sh. Rekhviashvili.

Additional information

Original Russian Text © A.A. Potapov, S.Sh. Rekhviashvili, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 6, pp. 803–807.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapov, A.A., Rekhviashvili, S.S. Simulation of Properties of Images with Atomic Resolution in a Scanning Probe Microscope. Tech. Phys. 63, 777–781 (2018). https://doi.org/10.1134/S1063784218060166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218060166

Navigation