Skip to main content
Log in

Streamers at the Subnanosecond Breakdown of Argon and Nitrogen in Nonuniform Electric Field at Both Polarities

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An ICCD camera was used to study plasma glow at the stage of the streamer (ionization wave) formation in the tip–plane gap with a length of 3 mm filled with argon or nitrogen at a pressure of 12.5–400 kPa. Positive and negative nanosecond voltage pulses were applied across the gap. Images of streamer were obtained at different time at its propagation along the gap. A streak-camera equipped with a spectrometer was used to measure time evolution of the radiation intensity of nitrogen molecules at a wavelength of 337.1 nm in several regions along the gap at the negative polarity. Average streamer velocity (1.8 cm/ns) was estimated from experimental data at atmospheric pressure of nitrogen. Amplitude–time characteristics of voltage, discharge current and the current of runaway electron beam behind the aluminum-foil anode with a thickness of 10 μm were measured. Reasons for a diffuse discharge under the given experimental conditions were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, Plasma Devices Oper. 16, 267 (2008).

    Article  Google Scholar 

  2. G. V. Naidis, Phys. Rev. E 79, 57401 (2009).

    Article  ADS  Google Scholar 

  3. P. Tardiveau, N. Moreau, S. Bentaleb, C. Postel, and S. Pasquiers, J. Phys. D: Appl. Phys. 42, 175202 (2009).

    Article  ADS  Google Scholar 

  4. N. Yu. Babaeva and M. J. Kushner, Plasma Sources Sci. Technol. 18, 035009 (2009).

    Article  ADS  Google Scholar 

  5. I. D. Kostyrya and V. F. Tarasenko, Tech. Phys. 55, 270 (2010).

    Article  Google Scholar 

  6. D. Z. Pai, G. D. Stancu, D. A. Lacoste, and C. O. Laux, Plasma Sources Sci. Technol. 18, 045030 (2009).

    Article  ADS  Google Scholar 

  7. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, Tech. Phys. 55, 210 (2010).

    Article  Google Scholar 

  8. S. N. Ivanov, V. V. Lisenkov, and V. G. Shpak, J. Phys. D: Appl. Phys. 43, 315204 (2010).

    Article  ADS  Google Scholar 

  9. V. F. Tarasenko, E. Kh. Baksht, and Yu. V. Shut’ko, IEEE Trans. Plasma Sci. 39, 2096 (2011).

    Article  ADS  Google Scholar 

  10. S. Yatom, V. Vekselman, J. Z. Gleizer, and Ya. E. Krasik, J. Appl. Phys. 109, 073312 (2011).

    Article  ADS  Google Scholar 

  11. A. Yu. Starikovskiy, IEEE Trans. Plasma Sci. 39, 2602 (2011).

    Article  ADS  Google Scholar 

  12. T. Shao, V. F. Tarasenko, Ch. Zhang, E. Kh. Baksht, P. Yan, and Yu. V. Shut’ko, Laser Part. Beams 30, 369 (2012).

    Article  ADS  Google Scholar 

  13. D. Levko, Ya. E. Krasik, and V. F. Tarasenko, Int. Rev. Phys. 6, 165 (2012).

    Google Scholar 

  14. A. M. Boichenko, V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, M. V. Erofeev, and A. N. Tkachev, Tech. Phys. 58, 370 (2013).

    Article  Google Scholar 

  15. T. Shao, V. F. Tarasenko, Ch. Zhang, A. G. Burachenko, D. V. Rybka, I. D. Kostyrya, M. I. Lomaev, E. Kh. Baksht, and P. Yan, Rev. Sci. Instrum. 84, 053506 (2013).

    Article  ADS  Google Scholar 

  16. M. V. Erofeev, E. Kh. Baksht, V. F. Tarasenko, and Yu. V. Shut’ko, Tech. Phys. 58, 200 (2013).

    Article  Google Scholar 

  17. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, M. V. Erofeev, and M. I. Lomaev, Tech. Phys. 59, 494 (2014).

    Article  Google Scholar 

  18. G. V. Naidis, IEEE Trans. Dielectr. Electr. Insul. 22, 2428 (2015).

    Article  Google Scholar 

  19. E. Kh. Baksht, A. G. Burachenko, M. V. Erofeev, and V. F. Tarasenko, Plasma Phys. Rep. 40, 404 (2014).

    Article  ADS  Google Scholar 

  20. Generation of Runaway Electrons and X-Ray Radiation in High-Pressure Discharges, Ed. by V. F. Tarasenko (STT, Tomsk, 2015).

    Google Scholar 

  21. V. F. Tarasenko, D. V. Beloplotov, and M. I. Lomaev, Plasma Phys. Rep. 41, 832 (2015).

    Article  ADS  Google Scholar 

  22. V. Yu. Kozhevnikov, A. V. Kozyrev, and N. S. Semeniuk, Europhys. Lett. 112, 15001 (2015).

    Article  ADS  Google Scholar 

  23. D. V. Beloplotov, V. F. Tarasenko, M. I. Lomaev, and D. A. Sorokin, IEEE Trans. Plasma Sci. 43, 3808 (2015).

    Article  ADS  Google Scholar 

  24. P. Tardiveau, L. Magne, E. Marode, K. Ouaras, P. Jeanney, and B. Bournonville, Plasma Sources Sci. Technol. 25, 054005 (2016).

    Article  ADS  Google Scholar 

  25. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, and M. I. Lomaev, Plasma Phys. Rep. 43, 792 (2017).

    Article  ADS  Google Scholar 

  26. N. Yu. Babaeva, D. V. Tereshonok, and G. V. Naidis, Plasma Sources Sci. Technol. 25, 044008 (2016).

    Article  ADS  Google Scholar 

  27. V. F. Tarasenko, E. Kh. Baksht, D. V. Beloplotov, A. G. Burachenko, M. I. Lomaev, and D. A. Sorokin, Laser Part. Beams 34, 748 (2016).

    Article  ADS  Google Scholar 

  28. L. P. Babich and T. V. Loiko, IEEE Trans. Plasma Sci. 44, 3243 (2016).

    Article  ADS  Google Scholar 

  29. N. Yu. Babaeva and G. V. Naidis, Phys. Plasmas 23, 083527 (2016).

    Article  ADS  Google Scholar 

  30. W. W. Byszewski and G. Reinhold, Phys. Rev. A 26, 2826 (1982).

    Article  ADS  Google Scholar 

  31. S. I. Yakovlenko, Tech. Phys. 49, 1150 (2004).

    Article  Google Scholar 

  32. M. I. Lomaev, D. V. Beloplotov, V. F. Tarasenko, and D. A. Sorokin, IEEE Trans. Dielectr. Electr. Insul. 22, 1833 (2015).

    Article  Google Scholar 

  33. A. V. Kozyrev, V. F. Tarasenko, E. Kh. Baksht, and Yu. V. Shut’ko, Tech. Phys. Lett. 37, 1054 (2011).

    Article  ADS  Google Scholar 

  34. E. Kh. Baksht, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, Phys. Wave Phenom. 16, 199 (2008).

    Article  ADS  Google Scholar 

  35. E. E. Kunhardt and W. W. Byszewski, Phys. Rev. A 21, 2069 (1980).

    Article  ADS  Google Scholar 

  36. Y. Itikawa, J. Phys. Chem. Ref. Data 31, 749 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Beloplotov.

Additional information

Original Russian Text © D.V. Beloplotov, M.I. Lomaev, D.A. Sorokin, V.F. Tarasenko, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 6, pp. 819–826.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beloplotov, D.V., Lomaev, M.I., Sorokin, D.A. et al. Streamers at the Subnanosecond Breakdown of Argon and Nitrogen in Nonuniform Electric Field at Both Polarities. Tech. Phys. 63, 793–800 (2018). https://doi.org/10.1134/S1063784218060063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218060063

Navigation