Skip to main content
Log in

Formation of nickel magnetic nanoparticles and modification of nickel phthalocyanine matrix by sodium doping

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Data for the vapor-phase doping (300°C) of nickel phthalocyanine (NiPc) by sodium taken in different concentrations (x), as well as structural analysis data for Na x = 0.2NiPc, Na x = 1NiPc, and Na x = 3NiPc samples, have been reported. The structure of the samples and their atomic configuration versus the doping level have been studied by transmission electron microscopy, Raman scattering, X-ray diffraction, X-ray absorption spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The structural parameters of Ni–N, Ni–C, and Ni–Ni bonds have been determined, and it has been found that, at a low level of doping by sodium, local structural distortions are observed in some molecules of the NiPc matrix near nickel atoms. The fraction of these molecules grows as the doping level rises from x = 0.2 to x = 1.0. It has been shown that doping changes the oscillation mode of light atoms, which indicates a rise in the electron concentration on five- and six-membered rings. At a high level of sodium doping (x = 3.0), nickel nanoparticles with a mean size of 20 nm and molecule decomposition products have been observed in the NiPc matrix. It has been found that the fraction of nickel atoms in the Na x = 3NiPc nanoparticles as estimated from EXAFS data is sufficient for the room-temperature magnetic properties of the samples to persist for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Aiken III and R. G. Finke, J. Mol. Catal. A: Chem. 145, 1 (1999).

    Article  Google Scholar 

  2. R. Reisfeld, T. Saraidarov, and V. Levchenko, Opt. Appl. 38, 83 (2008).

    Google Scholar 

  3. C.-J. Jia and F. Schuth, Phys. Chem. Chem. Phys. 13, 2457 (2011).

    Article  Google Scholar 

  4. C.-X. Liu, Q. Liu, C.-C. Guo, and Z. Tan, J. Porphyrins Phthalocyanines 14, 825 (2010).

    Article  Google Scholar 

  5. M. Idowu and T. Nyokong, Int. J. Nanosci. 11, 1250018 (2012).

    Article  Google Scholar 

  6. J. G. Guan, W. Wang, R. Z. Gong, R. Z. Yuan, L. H. Gan, and K. C. Tam, Langmuir 18, 4198 (2002).

    Article  Google Scholar 

  7. B. Brauer, Y. Vaynzof, W. Zhao, A. Kahn, W. Li, D. R. T. Zahn, C. de Julian Fernandez, C. Sangregorio, and G. J. Salvan, J. Phys. Chem. 113, 4565 (2009).

    Article  Google Scholar 

  8. R. E. Schaak, A. K. Sra, B. M. Leonard, R. E. Cable, J. C. Bauer, Y.-F. Han, J. Means, W. Teizer, Y. Vasquez, and E. S. Funck, J. Am. Chem. Soc. 127, 3506 (2005).

    Article  Google Scholar 

  9. F. Li, X. Yu, H. Pan, M. Wang, and X. Xin, Solid State Sci. 2, 767 (2000).

    Article  ADS  Google Scholar 

  10. N. A. Kolpacheva, L. A. Avakyan, A. S. Manukyan, A. A. Mirzakhanyan, E. G. Sharoyan, V. V. Pryadchenko, Ya. V. Zubavichus, A. L. Trigub, A. G. Fedorenko, and L. A. Bugaev, Phys. Solid State 58, 1004 (2016).

    Article  ADS  Google Scholar 

  11. S. Zhou, Y. Li, Z. Chen, X. X. Li, N. Chen, and G. Du, Ceram. Int. 39, 6763 (2013).

    Article  Google Scholar 

  12. L. Grigoryan, M. Simonyan, and E. Sharoyan, SU Patent No. 120686 (1984).

    Google Scholar 

  13. J. M. Robertson and I. Woodward, J. Chem. Soc. 36, 219 (1937).

    Article  Google Scholar 

  14. A. V. Chichagov, D. A. Varlamov, R. A. Dilanyan, T. N. Dokina, N. A. Drozhzhina, O. L. Samokhvalova, and T. V. Ushakovskaya, Crystallogr. Rep. 46, 876 (2001).

    Article  ADS  Google Scholar 

  15. V. V. Pryadchenko, V. V. Srabionyan, E. B. Mikheykina, L. A. Avakyan, V. Y. Murzin, Y. V. Zubavichus, I. Zizak, V. E. Guterman, and L. A. Bugaev, J. Phys. Chem. C 119, 3217 (2015).

    Article  Google Scholar 

  16. V. V. Srabionyan, A. L. Bugaev, V. V. Pryadchenko, A. V. Makhiboroda, E. B. Rusakova, L. A. Avakyan, R. Schneider, M. Dubiel, and L. A. Bugaev, J. Non- Cryst. Solids 382, 24 (2013).

    Article  ADS  Google Scholar 

  17. M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, Phys. B (Amsterdam, Neth.) 208–209, 154 (1995).

    Article  Google Scholar 

  18. D. C. Koningsberger, B. L. Mojet, G. E. van Dorssen, and D. E. Ramaker, Top. Catal. 10, 143 (2000).

    Article  Google Scholar 

  19. A. V. Poiarkova and J. J. Rehr, Phys. Rev. B: Condens. Matter Mater. Phys. 59, 948 (1999).

    Article  ADS  Google Scholar 

  20. C. A. Melendres and V. A. Maroni, J. Raman Spectrosc. 15, 319 (1984).

    Article  ADS  Google Scholar 

  21. T. V. Basova, B. A. Kolesov, A. G. Gürek, and V. Ahsen, Thin Solid Films 385, 246 (2001).

    Article  ADS  Google Scholar 

  22. I. V. Aleksandrov, Ya. S. Bobovich, V. G. Maslov, and A. N. Sidorov, Opt. Spektrosk. 37, 467 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Bugaev.

Additional information

Original Russian Text © N.A. Kolpacheva, M.V. Avramenko, L.A. Avakyan, Ya.V. Zubavichus, A.A. Mirzakhanyan, A.S. Manukyan, E.G. Sharoyan, L.A. Bugaev, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 10, pp. 1532–1538.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolpacheva, N.A., Avramenko, M.V., Avakyan, L.A. et al. Formation of nickel magnetic nanoparticles and modification of nickel phthalocyanine matrix by sodium doping. Tech. Phys. 62, 1538–1544 (2017). https://doi.org/10.1134/S1063784217100152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217100152

Navigation