Skip to main content
Log in

Diagnostics of the loss of stability of loaded constructions and the development of the sites of breakdown during the action of seismic explosion and air shock waves

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

One of the challenging problems for mining enterprises, namely, predicting the decrease in the strength of the structure elements in guarded buildings and constructions during blasting, is solved in terms of a stress concentration factor, the time of exceeding the long-term tensile strength, and the crack growth rate. It is shown that the existence of stress concentrators in the form of natural heterogeneities or defects in the building materials of the building elements subjected to the action of seismic explosion and air shock waves results in crack growth. The distribution of cracks in samples of some materials and the ultimate tensile strength of these materials are determined to find the surface energy. The size distribution of cracks is used to calculate the effective crack length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Sobolev and A. V. Ponomarev, Fiz. Zemli, No. 10, 48 (2011).

    Google Scholar 

  2. V. S. Kuksenko, Kh. F. Makhmudov, V. A. Mansurov, U. Sultonov and M. Z. Rustamova, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4, 55 (2009).

    Google Scholar 

  3. A. Carpinteri, J. Xu, G. Lacidogna, and A. Manuello, Cem. Concr. Comp. 34, 529 (2012).

    Article  Google Scholar 

  4. M. A. Sadovskii and G. A. Sobolev, Physical Foundation of Rock-Burst Prediction on Earthquake (Nauka, Moscow, 1987), p. 125.

    Google Scholar 

  5. M. G. Menzhulin, Kh. F. Makhmudov, and I. P. Shcherbakov, in Science Today: Theory, Practice, and Innovation (Nauchnoe Sotrudnichestvo, Rostov-on-Don, 2014), pp. 159–187.

    Google Scholar 

  6. A. M. Gul’el’mi, O. D. Zotov, and A. D. Zav’yalov, Fiz. Zemli, No. 1, 66 (2014).

    Google Scholar 

  7. M. G. Menzhulin, Kh. F. Makhmudov, V. S. Kuksenko, and U. Sultonov, Vestn. Tambovsk. Univ., Ser. Estestv. Tekh. Nauki 18, 1667 (2013).

    Google Scholar 

  8. Kh. F. Makhmudov, V. S. Kuksenko, N. G. Tomilin, and A. V. Benin, Vestn. Tambovsk. Univ., Ser. Estestv. Tekh. Nauki 18, 1909 (2013).

    Google Scholar 

  9. M. Pigeon, G. Toma, A. Delagrave, J. Marchand, B. Bissonnette, and J. C. Prince, “Equipment for the analysis and behavior of concrete under restrained shrinkage at early-ages,” J. Concr. Res. 52, 297 (2000).

    Article  Google Scholar 

  10. J. H. Moon and W. J. Weiss, “Estimating residual stress in restrained ring test under circumferential drying,” J. Cem. Concr. Comp. 28, 486 (2006).

    Article  Google Scholar 

  11. J. M. Sancho, J. Planas, D. A. Cendon, E. Reyes, and J. C. Galvez, Eng. Fract. Mech. 74, 75 (2007).

    Article  Google Scholar 

  12. J. M. Sancho, J. Planas, A. M. Fathy, J. C. Galvez, and D. A. Cendon, Int. J. Numer. Anal. Meth. Geomech. 31, 173 (2007).

    Article  MATH  Google Scholar 

  13. A. V. Benin, Deformation and Fracture of Ferroconcrete: Analytical, Numerical, and Experimental Research (GUPS, St. Petersburg, 2006).

    Google Scholar 

  14. Ju Gang Luo, et al., Appl. Mech. Mater. 188 (2012).

    Google Scholar 

  15. V. S. Kuksenko, N. G. Tomilin, Kh. F. Makhmudov, and A. V. Benin, Tech. Phys. Lett. 33, 62 (2007).

    Article  ADS  Google Scholar 

  16. A. V. Benin, A. S. Semenov, and S. G. Semenov, Adv. Mater. Res. 831, 364 (2013).

    Article  Google Scholar 

  17. A. P. Surzhikov and T. V. Fursa, Tech. Phys. 53, 462 (2008).

    Article  Google Scholar 

  18. D. A. Fifolt, V. F. Petrenko, and E. M. Schulson, Philos. Mag. B 67, 289 (1993).

    Article  ADS  Google Scholar 

  19. A. V. Benin, Seismostoikoe Stroitelstvo Bezopasnykh Sooruzhenii, No. 3, 16 (2007).

    Google Scholar 

  20. Kai Lai Deng, et al., Appl. Mech. Mater. 188 (2012).

    Google Scholar 

  21. V. S. Kuksenko, Kh. F. Makhmudov, and B. Ts. Manzhikov, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4, 29 (2010).

    Google Scholar 

  22. R. V. Gol’dshtein and V. M. Yentov, Qualitative Methods in Mechanics of Continuos Media (Nauka, Moscow, 1989).

    Google Scholar 

  23. E. B. Zavoichinskaya and I. A. Kiiko, Introduction to Theory of Solid Fracture: Tutorial (MGU, Moscow, 2004).

    Google Scholar 

  24. D. Broek, Foundation of Fracture Mechanics (Vysshaya Shkola, Moscow, 1980).

    Google Scholar 

  25. A. M. Leksovskii, G. N. Gubanova, V. E. Yudin, and B. L. Baskin, Tech. Phys. 58, 896 (2013).

    Article  Google Scholar 

  26. A. A. Kozhushko and A. B. Sinani, Phys. Solid State 47, 836 (2005).

    Article  ADS  Google Scholar 

  27. A. M. Leksowskij, V. A. Borovikov, N. S. Bozorov, A. A. Abdumanonov, A. B. Sinani, and S. A. Piletski, Tech. Phys. Lett. 28, 705 (2002).

    Article  ADS  Google Scholar 

  28. V. V. Panasyuk, Limit Equilibrium of Cracked Brittle Solids (Naukova Dumka, Kyiv, 1968).

    Google Scholar 

  29. V. Z. Parton, Fracture Mechanics: From Theory to Practice (Gordon and Breach, Philadelphia, 1992).

    Google Scholar 

  30. V. Z. Parton and E. M. Morozov, Elastic–Plastic Fracture Mechanics (Mir, Moscow, 1978).

    MATH  Google Scholar 

  31. N. P. Kobelev, Ya. M. Soifer, A. F. Gurov, S. P. Nikanorov, A. B. Sinani, R. DeBatist, and J. Van Humbeeck, Phys. Solid State 44, 82 (2002).

    Article  ADS  Google Scholar 

  32. A. M. Leksowskij and B. L. Baskin, Phys. Solid State 53, 1223 (2011).

    Article  ADS  Google Scholar 

  33. K. R. E. Hellan, Introduction to Fracture Mechanics (McGraw-Hill, New York, 1984).

    Google Scholar 

  34. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (Wiley, New York, 2012).

    Google Scholar 

  35. G. P. Cherepanov, Mechanics of Brittle Fracture (McGraw-Hill, New York–London, 1979).

    MATH  Google Scholar 

  36. M. V. Zakharyan, “Prediction of decrease element strength of construction under action of blast load on building,” Candidate’s Dissertation (St. Petersburg, 2011), p. 20.

    Google Scholar 

  37. Kh. F. Makhmudov, Deform. Razrush. Mater., No. 8, 41 (2012).

    Google Scholar 

  38. L. R. Betterman, C. Ouyang, and S. P. Shah, “Fiber- Matrix interaction in microfiber-reinforced mortar,” Adv. Cement Based Mater., No. 3, 53 (1995).

    Article  Google Scholar 

  39. V. C. Li, S. Wang, and C. Wu, “Tensile strain-hardening behavior of PVA-ECC,” ACI Mater. J. 98, 483 (2001).

    Google Scholar 

  40. O. Kentaro and O. Masayasu, Constr. Building Mater. 24, 2339 (2010).

    Article  Google Scholar 

  41. V. S. Kuksenko, Kh. F. Makhmudov, M. D. Il’inov, and Z. M. Abdurakhmonov, Vestn. Inzh. Shkoly Dal’nevostochn. Federal. Univ., No. 3 (20), 98 (2014).

    Google Scholar 

  42. A. A. Kozyrev, V. I. Panin, S. N. Savchenko, et al., Seismicity at Mine Works, Ed. by N. N. Mel’nikov (Kol’sk. Nauch. Tsentr RAN, Apatity, 2002), p. 326.

  43. M. G. Menzhulin, Kh. F. Makhmudov, I. P. Shcherbakov (Lambert Academic, 2014), p. 68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. F. Makhmudov.

Additional information

Original Russian Text © Kh.F. Makhmudov, M.G. Menzhulin, M.V. Zakharyan, U. Sultonov, Z.M. Abdurakhmanov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 60, No. 11, pp. 79–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhmudov, K.F., Menzhulin, M.G., Zakharyan, M.V. et al. Diagnostics of the loss of stability of loaded constructions and the development of the sites of breakdown during the action of seismic explosion and air shock waves. Tech. Phys. 60, 1651–1657 (2015). https://doi.org/10.1134/S1063784215110201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215110201

Keywords

Navigation