Skip to main content
Log in

Electronically tunable spin-wave optoelectronic microwave oscillator

  • Short Communications
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The characteristics of a spin-wave optoelectronic microwave oscillator are experimentally studied for the first time. The oscillator represents a ring structure the microwave circuit of which contains a spinwave delay line based on the yttrium–iron-garnet film. The optical part of the oscillator contains a fiberoptic delay line with a length of 100 m. It is demonstrated that the spin-wave delay line makes it possible to tune the output frequency in wide ranges at a relatively low level of the phase noise. In the gigahertz frequency range, the level of the phase noise is no greater than–110 dBc/Hz at a detuning of 10 kHz from the carrier frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996).

    Article  ADS  Google Scholar 

  2. M. Belkin and A. Loparev, Elektronika: Nauka Tekhnol. Biznes, No. 6, 62 (2010).

    Google Scholar 

  3. J. Yao, J. Lightwave Technol. 27, 314 (2009).

    Article  ADS  Google Scholar 

  4. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).

    Article  ADS  Google Scholar 

  5. M. L. Gorodetsky, Optical Microcavities with Giant Q-Factor (Fizmatlit, Moscow, 2011).

    Google Scholar 

  6. K. Volyanskiy, J. Cussey, H. Tavernier, P. Salzenstein, G. Sauvage, L. Larger, and E. Rubiola, J. Opt. Soc. Am. B 25, 2140 (2008).

    Article  ADS  Google Scholar 

  7. D. Eliyahu and L. Maleki, in Proceedings of the IEEE Microwave Theory and Techniques Society (MTT-S) International Microwave Symposium, Philadelfia, 2003, Vol. 3, pp. 2185–2187.

    Google Scholar 

  8. M. E. Belkin and A. V. Loparev, Nano-Mikrosist. Tekh., No. 9, 29 (2011).

    Google Scholar 

  9. D. Zhu, S. Pan, and D. Ben, IEEE Photonics Technol. Lett. 24, 194 (2012).

    Article  ADS  Google Scholar 

  10. A. V. Vashkovskii, V. S. Stal’makhov, and Yu. P. Sharaevskii, Magnitostatic Waves in Microwave Electronics (SGU, Saratov, 1993).

    Google Scholar 

  11. B. A. Kalinikos, A. B. Ustinov, and S. A. Baruzdin, Spin-Wave Devices and Echo Processors: A Monography, Ed. by V. N. Ushakov (Radiotekhnika, Moscow, 2013).

  12. V. V. Rogozin and V. I. Churkin, Ferrite Filters and Power Limiters (Radio i Svyaz’, Moscow, 1985).

    Google Scholar 

  13. B. A. Kalinikos, M. K. Kovaleva, and N. G. Kovshikov, “Device for excitation and transfer of spin waves,” USSR Inventor Certificate No. 801747, MKL3 N03N9/125 (1979), No. 2830675.

    Google Scholar 

  14. F. F. Nikitin and B. A. Kalinikos, Tech. Phys. 60, 1397 (2015).

    Google Scholar 

  15. E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge Univ., Cambridge, 2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Ustinov.

Additional information

Original Russian Text © A.B. Ustinov, A.A. Nikitin, B.A. Kalinikos, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 9, pp. 136–140.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustinov, A.B., Nikitin, A.A. & Kalinikos, B.A. Electronically tunable spin-wave optoelectronic microwave oscillator. Tech. Phys. 60, 1392–1396 (2015). https://doi.org/10.1134/S1063784215090224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215090224

Keywords

Navigation