Skip to main content
Log in

Distribution of dislocations and twins in copper and 18Cr-10Ni-Ti steel under shock-wave loading

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The distribution of dislocations and twins over the cross section of shock-loaded copper and 18Cr-10Ni-Ti steel specimens is investigated experimentally and numerically. It is found that the volume fraction of twins near the loaded surface and a spall crack is an order of magnitude higher than their fraction at the center of the target. The features of twins arising in different parts of the target are discussed. A model of a twinning mechanism in coarse-grained metals is proposed and used for numerical simulation of the dislocation and twin depth distribution in shock-loaded targets. It is shown that in thin targets (less than 1 mm thick), the distribution of twins can be even more uniform than the distribution of the dislocations density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  2. E. V. Shorokhov, I. N. Zhgilev, I. V. Khomskaya, I. G. Brodova, V. I. Zel’dovich, D. V. Gunderov, N. Yu. Frolova, A. A. Gurov, N. P. Oglezneva, I. G. Shirinkina, A. E. Kheifets, and V. V. Astaf’ev, Deform. Razrushenie Mater., No. 2, 36 (2009).

    Google Scholar 

  3. S. A. Antroshenko, Yu. I. Meshcheryakov, E. V. Nesterova, and V. V. Rybin, Fiz. Met. Metalloved. 75(4), 136 (1993).

    Google Scholar 

  4. Yu. I. Mesheryakov, A. K. Divakov, N. I. Zhigacheva, I. P. Makarevich, and B. K. Barakhtin, Phys. Rev. B 78, 064301 (2008).

    Article  ADS  Google Scholar 

  5. G. J. Raab, R. Z. Valiev, T. C. Lowe, and Y. T. Zhu, Mat. Sci. Eng. A 382, 30 (2004).

    Article  Google Scholar 

  6. Shock Waves and High-Strain-Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum, New York, 1981).

    Google Scholar 

  7. E. N. Borodin and A. E. Mayer, Tech. Phys. 58, 1159 (2013).

    Article  Google Scholar 

  8. E. V. Shorokhov, I. N. Zhiglev, and R. Z. Valiev, “Method of Dynamical Treatment of Materials,” RF Patent No. 2283717, Byull. Izobret. No. 26 (2006).

    Google Scholar 

  9. R. W. Armstrong and S. M. Walley, Int. Mater. Rev. 3, 105 (2008).

    Article  Google Scholar 

  10. M. Yu. Gutkin and I. A. Ovid’ko, Usp. Mekh. 2, 68 (2003).

    Google Scholar 

  11. D. Wolf, V. Yamakov, S. R. Phillpot, A. Mukherjee, and H. Gleiter, Acta Mater. 53, 1 (2005).

    Article  Google Scholar 

  12. A. G. Froseth, P. M. Derlet, and H. V. Swygenhoven, Acta Mater. 52, 5863 (2004).

    Article  Google Scholar 

  13. A. E. Mayer, K. V. Khishchenko, P. R. Levashov, and P. N. Mayer, J. Appl. Phys. 113, 193508 (2013).

    Article  ADS  Google Scholar 

  14. A. E. Mayer, E. N. Borodin, and P. N. Mayer, Int. J. Plast. 51, 188 (2013).

    Article  Google Scholar 

  15. E. N. Borodin and A. E. Mayer, Mater. Sci. Eng., A 532, 245 (2012).

    Article  Google Scholar 

  16. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge Univ., Cambridge, 2009).

    MATH  Google Scholar 

  17. S. Allia, J.-P. Chateau, and O. Bouaziz, Mater. Sci. Eng., A 387–389, 143 (2004).

    Google Scholar 

  18. M. A. Meyers, Dynamic Begavior of Materials (Wiley, New York, 1994).

    Book  Google Scholar 

  19. M. A. Meyers, O. Vohringer, and V. A. Lubarda, Acta Mater. 49, 4025 (2001).

    Article  Google Scholar 

  20. S. A. Atroshenko, Khim. Fiz. 21(9), 93 (2002).

    Google Scholar 

  21. Yu. I. Meshcheryakov and A. K. Divakov, DYMAT J. 1, 271 (1994).

    Google Scholar 

  22. V. S. Krasnkov, A. F. Mayer, and A. P. Yalovets, Int. J. Plast. 27, 1294 (2011).

    Article  Google Scholar 

  23. J. W. Christian and S. Mahjan, Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  24. C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976).

    Google Scholar 

  25. O. A. Plekhov, O. B. Naimark, N. Saintier, and T. Palin-Luc, Tech. Phys. 54, 1141 (2009).

    Article  Google Scholar 

  26. E. N. Borodin and A. E. Mayer, Phys. Solid State 54, 808 (2012).

    Article  ADS  Google Scholar 

  27. A. M. Kosevich and V. S. Boiko, Sov. Phys. Usp. 14, 286 (1971).

    Article  ADS  Google Scholar 

  28. K. H. Lo, C. H. Shek, and J. K. L. Lai, Mater. Sci. Eng., R 65, 39 (2009).

    Article  Google Scholar 

  29. C. Cardevila, F. G. Caballero, and C. Garcia de Andres, ISIJ Int. 42, 894 (2002).

    Article  Google Scholar 

  30. F. G. Caballero, L. F. Alvarez, C. Capdevila, and C. G. de Andres, Scr. Mater. 49, 315 (2003).

    Article  Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Pergamon, New York, 1986).

    Google Scholar 

  32. A. P. Yalovets, Prikl. Mekh. Tekh. Fiz. 38, 151 (1997).

    MATH  Google Scholar 

  33. S. N. Kolgatin and A. V. Khachatur’yants, Teplofiz. Vys. Temp. 20, 447 (1982).

    Google Scholar 

  34. A. E. Mayer and V. S. Krasnikov, Eng. Fract. Mech. 78, 1306 (2011).

    Article  Google Scholar 

  35. G. I. Kanel’, V. E. Fortov, and S. V. Rozorenov, Phys. Usp. 50, 771 (2007).

    Article  ADS  Google Scholar 

  36. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Experimental Profiles of Shock Waves in Condensed Substance (FIZMATLIT, Moscow, 2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Borodin.

Additional information

Original Russian Text © E.N. Borodin, S.A. Atroshenko, A.E. Mayer, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 8, pp. 59–66.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, E.N., Atroshenko, S.A. & Mayer, A.E. Distribution of dislocations and twins in copper and 18Cr-10Ni-Ti steel under shock-wave loading. Tech. Phys. 59, 1163–1170 (2014). https://doi.org/10.1134/S1063784214080076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214080076

Keywords

Navigation