Skip to main content
Log in

The Magneto-Optical Voigt Parameter from Magneto-Optical Ellipsometry Data for Multilayer Samples with Single Ferromagnetic Layer

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Calculations of the magneto-optical Voigt parameter Q were carried out using various models of reflecting media for thin films Fe|SiO2|Si(100) samples using the data of the in situ magneto-ellipsometry. The obtained spectral dependences of Q make it possible to choose the algorithm for the analysis of experimental magneto-ellipsometry data and demonstrate that magneto-optical parameter Q of iron is thickness-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, New York, 2007).

    Book  Google Scholar 

  2. C. Ma, H. G. Wang, P. J. Zhao, J. Bao Xu, A. M. Chang, L. Wang, and L. Bian, Mater. Lett. 136, 225 (2014).

    Article  Google Scholar 

  3. J. Mack, M. J. Stillman, and N. Kobayashi, Coord. Chem. Rev. 251, 429 (2007).

    Article  Google Scholar 

  4. M. L. Kirk and K. Peariso, Curr. Opin. Chem. Biol. 7, 220 (2003).

    Article  Google Scholar 

  5. R. Rauer, G. Neuber, J. Kunze, J. Bäckström, and M. Rübhausen, Rev. Sci. Instrum. 76, 023910 (2005).

    Article  ADS  Google Scholar 

  6. G. Neuber, R. Rauer, J. Kunze, T. Korn, C. Pels, G. Meier, U. Merkt, J. Bäckström, and M. Rübhausen, Appl. Phys. Lett. 83, 4509 (2003).

    Article  ADS  Google Scholar 

  7. A. V. Sokolov, Optical Properties of Metals (GIFML, Moscow, 1961) [in Russian].

    Google Scholar 

  8. T. Haider, J. Electromagn. Appl. 7, 17 (2017).

    Google Scholar 

  9. A. Molina-Sánchez, G. Catarina, D. Sangalli, and J. Fernandez-Rossier, J. Mater. Chem. C 8, 8856 (2020).

    Article  Google Scholar 

  10. K. W. Wierman, J. N. Hilfiker, R. F. Sabiryanov, S. S. Jaswal, R. D. Kirby, and J. A. Woollam, Phys. Rev. B 55, 3093 (1997).

    Article  ADS  Google Scholar 

  11. S. Lyaschenko, O. Maximova, D. Shevtsov, S. Varnakov, I. Tarasov, U. Wiedwald, J. Rosen, S. Ovchinnikov, and M. Farle, J. Magn. Magn. Mater. 528, 167803 (2021).

    Article  Google Scholar 

  12. I. D. Lobov, PhD Thesis (Mikheev Inst. Met. Phys., Ural Branch Russ. Acad. Sci., Yekaterinburg, 2018). http://imp.uran.ru/sites/default/files/disertation/2018_09/diss_lobov_bez_podpisi.pdf.

  13. V. M. Mayevsky and G. A. Bolotin, Fiz. Met. Metallogr. 32, 1168 (1971).

    Google Scholar 

  14. V. I. Belotelov, PhD Thesis (Moscow State Univ., Moscow, 2012).

  15. A. K. Zvezdin and V. A. Kotov, Magneto-Optics of Thin Films (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  16. V. I. Belotelov and A. K. Zvezdin, J. Opt. Soc. Am. B 22, 286 (2005).

    Article  ADS  Google Scholar 

  17. Linear magneto-optical effects in ferromagnets in reflected light (Moscow State University, Moscow, 2010). http://nano.msu.ru/files/systems/4_2010/practical/38_full.pdf.

  18. Š. Višňovský, Czechosl. J. Phys. B 36, 625 (1986).

    Google Scholar 

  19. Š. Višňovský, R. Lopušník, M. Bauer, J. Bok, J. Fassbender, and B. Hillebrands, Opt. Express 9, 121 (2001).

    Article  ADS  Google Scholar 

  20. P. Yeh, Surf. Sci. 96, 41 (1980).

    Article  ADS  Google Scholar 

  21. G. Neuber, R. Rauer, J. Kunze, J. Backstrom, and M. Rübhausen, Thin Solid Films 455–456, 39 (2004).

    Article  Google Scholar 

  22. A. Berger and M. R. Pufall, Appl. Phys. Lett. 71, 965 (1997).

    Article  ADS  Google Scholar 

  23. O. Bakradze, J. Opt. Technol. 66, 442 (1999).

    Article  ADS  Google Scholar 

  24. O. Bakradze, J. Opt. Technol. 72, 225 (2005).

    Article  ADS  Google Scholar 

  25. O. Bakradze, Z. Alimbarashvili, and R. Janelidze, a-rXiv: 0909.2977 (2005).

  26. K. Mok, G. J. Kovács, J. McCord, L. Li, M. Helm, and H. Schmidt, Phys. Rev. B 84, 094413 (2011).

    Article  ADS  Google Scholar 

  27. K. Mok, N. Du, and H. Schmidt, Rev. Sci. Instrum. 82, 033112 (2011).

    Article  ADS  Google Scholar 

  28. D. V. Shevtsov, S. A. Lyashchenko, and S. N. Varnakov, Instrum. Exp. Tech. 60, 759 (2017).

    Article  Google Scholar 

  29. O. A. Maximova, N. N. Kosyrev, I. A. Yakovlev, D. V. Shevtsov, S. A. Lyaschenko, S. N. Varnakov, and S. G. Ovchinnikov, J. Magn. Magn. Mater. 440, 153 (2017).

    Article  ADS  Google Scholar 

  30. O. A. Maximova, N. N. Kosyrev, S. N. Varnakov, S. A. Lyaschenko, I. A. Yakovlev, I. A. Tarasov, D. V. Shevtsov, O. M. Maximova, and S. G. Ovchinnikov, J. Magn. Magn. Mater. 440, 196 (2017).

    Article  ADS  Google Scholar 

  31. O. A. Maximova, N. N. Kosyrev, S. N. Varnakov, S. A. Lyashchenko, and S. G. Ovchinnikov, IOP Conf. Ser.: Mater. Sci. Eng. 155, 012030 (2017).

  32. O. A. Maximova, S. G. Ovchinnikov, N. N. Kosyrev, and S. A. Lyaschenko, J. Sib. Fed. Univ., Math. Phys. 10, 223 (2017).

    Google Scholar 

  33. O. A. Maximova, S. A. Lyaschenko, S. N. Varnakov, and S. G. Ovchinnikov, Def. Dif. Forum 386, 131 (2018).

    Article  Google Scholar 

  34. M. W. Barsoum, in Ceramics Science and Technology, Ed. by R. Riedel and I.-W. Chen, 1st ed. (Wiley-VCH, Weinheim, 2010), p. 299.

    Google Scholar 

  35. S. P. Gubin, Magnetic Nanoparticles (Wiley, New York, 2009).

    Book  Google Scholar 

  36. E. Bolthausen and A. Bovier, Spin Glasses (Springer, Berlin, 2007).

    Book  MATH  Google Scholar 

  37. M. Buchmeier, R. Schreiber, D. E. Bürgler, and C. M. Schneider, Phys. Rev. B 79, 064402 (2009).

    Article  ADS  Google Scholar 

  38. J. Kunes, Physica Scripta 109, 116 (2004).

    Article  Google Scholar 

  39. M.-F. Li, T. Ariizumi, and S. Suzuki, J. Phys. Soc. Jpn. 76, 054702 (2007).

    Article  ADS  Google Scholar 

  40. S. N. Varnakov, PhD Thesis (Fed. Res. Center Krasnoyarsk Sci. Center, Kirensky Inst. Phys., Sib. Branch Russ. Acad. Sci., Krasnoyarsk, 2017).

  41. G. S. Krinchik, Physics of Magnetic Phenomena (Moscow State University, Moscow, 1976) [in Russian].

  42. G. S. Landsberg, Optics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  43. N. V. Volkov, A. S. Tarasov, E. V. Eremin, S. N. Varnakov, S. G. Ovchinnikov, and S. M. Zharkov, J. Appl. Phys. 109, 123924 (2011).

    Article  ADS  Google Scholar 

  44. I. H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965).

    Article  ADS  Google Scholar 

  45. I. A. Tarasov, N. N. Kosyrev, S. N. Varnakov, S. G. Ovchinnikov, S. M. Zharkov, V. A. Shvets, S. G. Bondarenko, and O. E. Tereshchenko, Tech. Phys. 57, 1225 (2012).

    Article  Google Scholar 

  46. O. A. Maximova, S. A. Lyaschenko, M. A. Vysotin, I. A. Tarasov, I. A. Yakovlev, D. V. Shevtsov, A. S. Fedorov, S. N. Varnakov, and S. G. Ovchinnikov, JETP Lett. 110, 166 (2019).

    Article  ADS  Google Scholar 

  47. N. N. Kosyrev, V. N. Zabluda, I. A. Tarasov, S. A. Lyashchenko, D. V. Shevtsov, S. N. Varnakov, and S. G. Ovchinnikov, RF Patent No. 2560148 (2015).

  48. J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).

    Article  MathSciNet  Google Scholar 

  49. H. H. Ku, J. Res. Natl. Bureau Stand. 70C, 262 (1966).

    Google Scholar 

  50. R. W. Collins, I. An, H. Fujiwara, J. Lee, Y. Lu, J. Koh, and P. I. Rovira, Thin Solid Films 313–314, 18 (1998).

    Article  Google Scholar 

  51. L. A. Golovan, V. Yu. Timoshenko, and P. K. Kashkarov, Phys. Usp. 50, 595 (2007).

    Article  ADS  Google Scholar 

  52. J. Koh, Y. Lu, C. R. Wronski, Y. Kuang, R. W. Collins, T. T. Tsong, and Y. E. Strausser, Appl. Phys. Lett. 69, 1297 (1996).

    Article  ADS  Google Scholar 

  53. D. E. Aspnes, J. B. Theeten, and F. Hottier, Phys. Rev. B 20, 3292 (1979).

    Article  ADS  Google Scholar 

  54. J. Hamrle, M. Nyvlt, S. Visnovsky, R. Urban, P. Beauvillain, R. Megy, J. Ferre, L. Polerecky, and D. Renard, Phys. Rev. B 64, 155405 (2001).

    Article  ADS  Google Scholar 

  55. G. S. Krinchik and V. A. Artem’ev, Sov. Phys. JETP 26, 1080 (1968).

    ADS  Google Scholar 

  56. K. Mok, C. Scarlat, G. J. Kovács, L. Li, V. Zviagin, J. McCord, M. Helm, and H. Schmidt, J. Appl. Phys. 110, 123110 (2011).

    Article  ADS  Google Scholar 

  57. W. Geerts, Y. Suzuki, T. Katayama, K. Tanaka, K. Ando, and S. Yoshida, Phys. Rev. B 50, 12581 (1994).

    Article  ADS  Google Scholar 

  58. Y. Suzuki, T. Katayama, P. Bruno, S. Yuasa, and E. Tamura, Phys. Rev. Lett. 80, 5200 (1998).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” for the opportunity to record X-ray photoelectron spectra using a SPECS photoelectron spectrometer (http://ccu.kirensky.ru/info/19/).

Funding

The research was supported by the government of the Russian Federation (agreement no. 075-15-2019-1886).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Maximova.

Ethics declarations

The authors declare that they have no conflicts of interest.

APPENDIX

APPENDIX

For sample 4, additional studies were carried out using X-ray photoelectron spectroscopy (XPS) with layer-by-layer etching of the sample with argon ions (Fig. 11) to obtain information on the structure and elemental composition of the sample.

Fig. 11.
figure 11

(a) X-ray photoelectron spectra and (b) atomic content in the surface layer of sample 4.

X-ray photoelectron spectra were recorded using a SPECS photoelectron spectrometer with a PHOIBOS 150 MCD 9 hemispherical energy analyzer under excitation by MgKα (1253.6 eV) radiation from the magnesium anode of the X-ray tube and the normal angle of photoelectron registration. The transmission energies of the energy analyzer were 20 eV for survey spectra and 8 eV for high-resolution spectra. To obtain a depth profile of elements, a PU-IQE 12/38 (SPECS) argon ion source was used, the argon ion energy was 2.6 keV, and the ion current was 60 μA. The spectra were processed with the CasaXPS software package.

The Fe2p spectra show the presence of metallic iron with a binding energy of ~706.8 eV and, probably, several oxide phases that contain Fe3+ and Fe2+ after removal of the strongly oxidized surface layer by ion etching. The total proportion of elemental iron in the spectra increases with etching time from ~20 to ~50%. The occurrence of significant quantities of carbon and oxygen on the film surface is caused by exposure of the sample to the atmosphere during transfer to the XPS spectrometer. Taking into account the ex situ oxidation, the atomic concentration of iron is consistent with the data on thickness measurements by XRF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maximova, O., Lyaschenko, S., Tarasov, I. et al. The Magneto-Optical Voigt Parameter from Magneto-Optical Ellipsometry Data for Multilayer Samples with Single Ferromagnetic Layer. Phys. Solid State 63, 1485–1495 (2021). https://doi.org/10.1134/S1063783421090274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421090274

Keywords:

Navigation