Skip to main content
Log in

Influence of the Microwave Amplitude on the Spin Current at the Pt/YIG Interface

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Spectra of spin current in a heterostructure, consisting of an epitaxial film of yttrium iron garnet Y3Fe5O12 (YIG), grown on a gadolinium gallium garnet Gd3Ga5O12 (GGG) substrate, and a platinum (Pt) film, have been investigated. The spin current, induced by microwave irradiation of the YIG film in the ferromagnetic-resonance mode and by the inverse spin Hall effect, was measured in the temperature range T = 77–300 K at the microwave power and frequency varied in the ranges of 20 μW–50 mW and 2–9 GHz, respectively, to determine the influence of spin-wave resonances in YIG on the spectral characteristics of the spin current. It is found that the spin current amplitude due to spin-wave resonances of surface spin waves becomes comparable to the contribution from the ferromagnetic resonance with an increase in the microwave power at frequencies  f = 2–3 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971).

    Article  ADS  Google Scholar 

  2. E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).

    Article  ADS  Google Scholar 

  3. Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).

    Article  ADS  Google Scholar 

  4. C. W. Sandweg, Y. Kajiwara, K. Ando, E. Saitoh, and B. Hillebrands, Appl. Phys. Lett. 97, 252504 (2010).

    Article  ADS  Google Scholar 

  5. S. M. Rezende, R. L. Rodríguez-Suárez, M. M. Soares, L. H. Vilela-Leão, D. Ley Domínguez, and A. Azevedo, Appl. Phys. Lett. 102, 012402 (2013).

    Article  ADS  Google Scholar 

  6. S. Dushenko, Yu. Higuchi, Yu. Ando, T. Shinjo, and M. Shiraishi, Appl. Phys. Express 8, 103002 (2015).

    Article  ADS  Google Scholar 

  7. A. S. Grishin, G. A. Ovsyannikov, A. A. Klimov, V. V. Demidov, K. Y. Constantinian, I. V. Borisenko, V. L. Preobrazhensky, N. Tiercelin, and P. Pernod, J. Electron. Mater. 47, 1595 (2018).

    Article  ADS  Google Scholar 

  8. F. Yang and P. Ch. Hammel, J. Phys. D 51, 253001 (2018).

    Article  ADS  Google Scholar 

  9. O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys. Rev. B 82, 214403 (2010).

    Article  ADS  Google Scholar 

  10. S. Emori, U. S. Alaan, M. T. Gray, V. Sluka, Y. Chen, A. D. Kent, and Y. Suzuki, Phys. Rev. B 94, 224423 (2016).

    Article  ADS  Google Scholar 

  11. T. A. Shaikhulov and G. A. Ovsyannikov, Phys. Solid State 60, 2231 (2018).

    Article  ADS  Google Scholar 

  12. T. G. A. Verhagen, H. N. Tinkey, H. C. Overweg, M. van Son, M. Huber, J. M. van Ruitenbeek, and J. Aarts, J. Phys.: Condens. Matter 28, 056004 (2016).

    ADS  Google Scholar 

  13. M. Harder, Z. X. Cao, Y. S. Gui, X. L. Fan, and C.‑M. Hu, Phys. Rev. B 84, 054423 (2011).

    Article  ADS  Google Scholar 

  14. I. H. Solt, Jr., Appl. Phys. A 33, 1189 (1982).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.A. Atsarkin, V.V. Demidov, Yu.V. Kislinskii, A.M. Petrzhik, and A.V. Shadrin for fruitful discussion of the obtained results and help in carrying out measurements.

Funding

This study was performed within a State contract and supported in part by the Russian Foundation for Basic Research (project nos. 18-57-16001 and 19-07-00143). Research by A.A. Klimov was supported in part by the Russian Science Foundation (project no. 20-12-00276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Ovsyannikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantinian, K.Y., Ovsyannikov, G.A., Stankevich, K.L. et al. Influence of the Microwave Amplitude on the Spin Current at the Pt/YIG Interface. Phys. Solid State 63, 1432–1436 (2021). https://doi.org/10.1134/S1063783421090201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421090201

Keywords:

Navigation