Skip to main content
Log in

Landau Quantization Evolution of the Spinon Pair Spectrum in Weak Mott Insulator La0.15Sm0.85MnO3 + δ with Spinon Fermi Surface with Increasing Temperature and Magnetic Field Strength

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Measurements of the temperature dependences of La0.15Sm0.85MnO3 + δ magnetization in the temperature range of 4.2–100 K detected a magnetization threshold feature near the temperature Td ≅ 50 K, as-sociated with the existence of the small pseudogap Δe in the electron spectrum, characteristic of the weak Mott insulator. An increase in the external magnetic field strength H results in dielectric pseudogap Δe suppression, an increase in the density of states of free charge/spin carrier at EF, and the transformation of wave fragments of the charge/spin density. In the temperature range of 4.2–12 K, the quantization of the spectrum of pairs of low-energy magnetic excitations of Z2 quantum spin liquid is found in the form of composite spinon–gauge field quasiparticles. The formation of the continuous spectrum of quantum spin liquid excitations in the mode of “weak magnetic fields” H = 100 Oe, 350 Oe, and 1 kOe is explained within the models of Landau quantization of the spectrum of composite quasiparticles with fractional filling factors ν of three overlapping Landau bands. In the mode of the “strong external magnetic field” H = 3.5 kOe, new quantum oscillations of the temperature dependences of the magnetization of incompressible spinon liquid are detected in the form of three narrow steps (plateaus) corresponding to the complete filling of non-overlapping Landau bands with spinons with integer filling factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. S. Sachdev, arXiv: 0901.4103v6 (2009).

  2. O. I. Motrunich, Phys. Rev. B 72, 045105 (2005).

    Article  ADS  Google Scholar 

  3. T. Senthil, Phys. Rev. B 78, 035103 (2008).

    Article  ADS  Google Scholar 

  4. T. Senthil, Phys. Rev. B 78, 045109 (2008).

    Article  ADS  Google Scholar 

  5. X.-G. Wen, Lectures given in the Cargese Summer School of Strongly Correlated Electron Systems, 1990.

  6. V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987).

    Article  ADS  Google Scholar 

  7. X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989).

    Article  ADS  Google Scholar 

  8. R. B. Laughlin and Z. Zou, Phys. Rev. B 41, 664 (1990).

    Article  ADS  Google Scholar 

  9. E. Mele, Phys. Rev. B 38, 8940 (1988).

    Article  ADS  Google Scholar 

  10. K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  11. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    Article  ADS  Google Scholar 

  12. R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

    Article  ADS  Google Scholar 

  13. H. Aoki and T. Ando, Solid State Commun. 38, 1079 (1981).

    Article  ADS  Google Scholar 

  14. F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  15. R. B. Laughlin, Phys. Rev. Lett. 50, 1359 (1983).

    Article  Google Scholar 

  16. F. D. M. Haldane, and Y.-S. Wu, Phys. Rev. Lett. 55, 2887 (1985).

    Article  ADS  Google Scholar 

  17. F. D. M. Haldane, Phys. Rev. Lett. 67, 937 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  18. F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  19. B. I. Halperin, Phys. Rev. Lett. 52, 1583 (1984).

    Article  ADS  Google Scholar 

  20. R. B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988).

    Article  ADS  Google Scholar 

  21. F. N. Bukhanko and A. F. Bukhanko, Phys. Solid State 57, 1114 (2015).

    Article  ADS  Google Scholar 

  22. F. N. Bukhanko and A. F. Bukhanko, Phys. Solid State 58, 519 (2016).

    Article  ADS  Google Scholar 

  23. F. N. Bukhanko and A. F. Bukhanko, Phys. Solid State 61, 2525 (2019).

    Article  ADS  Google Scholar 

  24. A. Kitaev, Ann. Phys. (N.Y.) 321, 2 (2006).

    Article  ADS  Google Scholar 

  25. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge Univ. Press, Cambridge, UK, 1984).

    Book  Google Scholar 

  26. M. Y. Reizer, Phys. Rev. B 40, 11571 (1989).

    Article  ADS  Google Scholar 

  27. P. A. Lee, Phys. Rev. Lett. 63, 680 (1989).

    Article  ADS  Google Scholar 

  28. P. A. Lee and N. Nagaosa, Phys. Rev. B 46, 5621 (1992).

    Article  ADS  Google Scholar 

  29. J. Polchinski, Nucl. Phys. B 422, 617 (1994).

    Article  ADS  Google Scholar 

  30. B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B 50, 14048 (1994).

    Article  ADS  Google Scholar 

  31. C. Nayak and F. Wilczek, Nucl. Phys. B 430, 534 (1994).

    Article  ADS  Google Scholar 

  32. Y. B. Kim, A. Furusaki, X. G. Wen, and P. A. Lee, Phys. Rev. B 50, 17917 (1994).

    Article  ADS  Google Scholar 

  33. R. Coldea, D. A. Tennant, A. M. Tsvelik, and Z. Tylczynski, Phys. Rev. Lett. 86, 1335 (2001).

    Article  ADS  Google Scholar 

  34. R. Coldea, D. A. Tennant, and Z. Tylczynski, Phys. Rev. B 68, 134424 (2003).

    Article  ADS  Google Scholar 

  35. G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev. Lett. 98, 247201 (2007).

    Article  ADS  Google Scholar 

  36. H.-D. Chen and Z. Nussinov, J. Phys. A 41, 075001 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Reuther, R. Thomale, and S. Trebst, Phys. Rev. B 84, 100406(R) (2011).

  38. D. I. Khomskii and M. V. Mostovoy, J. Phys. A 36, 9197 (2003).

    Article  ADS  Google Scholar 

  39. A. van Rynbach, S. Todo, and S. Trebst, Phys. Rev. Lett. 105, 146402 (2010).

    Article  ADS  Google Scholar 

  40. Sung-Sik Lee, P. A. Lee, and T. Senthil, Phys. Rev. Lett. 98, 067006 (2007).

    ADS  Google Scholar 

  41. T. Grover, N. Trivedi, T. Senthil, and P. A. Lee, Phys. Rev. B 81, 245121 (2010).

    Article  ADS  Google Scholar 

  42. O. I. Motrunich, Phys. Rev. B 73, 155115 (2006).

    Article  ADS  Google Scholar 

  43. T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 (2004).

    Article  ADS  Google Scholar 

  44. X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989).

    Article  ADS  Google Scholar 

  45. G. Misguich, Th. Jolicoeur, and S. M. Girvin, Phys. Rev. Lett. 87, 097203 (2001).

    Article  ADS  Google Scholar 

  46. K. Kumar, K. Sun, and E. Fradkin, Phys. Rev. B 90, 174409 (2014).

    Article  ADS  Google Scholar 

  47. K. Kumar, K. Sun, and E. Fradkin, Phys. Rev. B 92, 094433 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. N. Bukhanko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhanko, F.N., Bukhanko, A.F. Landau Quantization Evolution of the Spinon Pair Spectrum in Weak Mott Insulator La0.15Sm0.85MnO3 + δ with Spinon Fermi Surface with Increasing Temperature and Magnetic Field Strength. Phys. Solid State 63, 687–701 (2021). https://doi.org/10.1134/S106378342105005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342105005X

Keywords:

Navigation