Skip to main content
Log in

The Structure of Defects, the Electron Energy-Band Structure, and the Semiconductor–Metal Transition in PrBaCo2O5.5 Cobaltite: Ab Initio PAW Approach

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic energy-band structure of the PrBaCo2O5 + δ cobaltite at the oxygen content close to 5.5 are calculated by the first-principle PAW methods. The semiconductor–metal phase transition at 5 + δ = 5.5 is shown to be a result of the transition of cobalt atoms in the octahedral environment from the high-spin to low-spin state. The cause of the appearance of the metallic conduction is an increase in the energy of antibonding eg states of pyramidal cobalt atoms, and, as a result, they are at the Fermi level, thereby determining the metallic character of the system. The effect of a deviation of the oxygen content from 5.5 on the energy-band structure and the conductivity is studied. The semiconductor–metal transition is shown can be observed only in a narrow range of the values of 5 + δ lower 5.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, and B. Raveau, J. Solid State Chem. 142, 247 (1999).

    Article  ADS  Google Scholar 

  2. H. Wu, Phys. Rev. B 64, 092413 (2001).

    Article  ADS  Google Scholar 

  3. F. Fauth, E. Suard, V. Caignaert, B. Domengés, I. Mirebeau, and L. Keller, Eur. Phys. J. B 21, 167 (2001).

    Article  ADS  Google Scholar 

  4. A. A. Taskin, A. N. Lavrov, and Y. Ando, Phys. Rev. Lett. 90, 227201 (2003).

    Article  ADS  Google Scholar 

  5. H. Wu, J. Phys.: Condens. Matter 15, 503 (2003).

    ADS  Google Scholar 

  6. C. Frontera, J. L. García-Muñoz, A. Llobet, and M. A. G. Aranda, Phys. Rev. B 65, 180405 (2002).

    Article  ADS  Google Scholar 

  7. S. Minoru, Y. Yasui, T. Fujita, T. Miyashita, M. Sato, and K. Kakurai, J. Phys. Soc. Jpn. 72, 1729 (2003).

    Article  ADS  Google Scholar 

  8. S. Minoru, Y. Yasui, M. Ito, S. Iikubo, M. Sato, and K. Kakurai, J. Phys. Soc. Jpn. 73, 464 (2004).

    Article  ADS  Google Scholar 

  9. A. A. Taskin, A. N. Lavrov, and Y. Ando, Phys. Rev. B 71, 134414 (2005).

    Article  ADS  Google Scholar 

  10. K. Zhang, L. Ge, R. Ran, Z. Shao, and Sh. Liu, Acta Mater. 56, 4876 (2008).

    Article  ADS  Google Scholar 

  11. E. Chavez, M. Mueller, L. Mogni, and A. Caneiro, J. Phys.: Conf. Ser. 167, 012043 (2009).

    Google Scholar 

  12. Y. P. Liu, S. H. Chen, H. R. Fuh, and Y. K. Wang, Commun. Comput. Phys. 14, 174 (2013).

    Article  Google Scholar 

  13. L. Zhang, Sh. Li, T. Xia, L. Sun, L. Huo, and H. Zhao, Int. J. Hydrogen Energy 43, 3761 (2018).

    Article  Google Scholar 

  14. B. Raveau, in Crystal Chemistry of Copper Oxides (-Wiley-VCH, Weinheim, 2012), p. 3.

    Google Scholar 

  15. R. Pelosato, G. Cordaro, D. Stucchi, C. Cristiani, and G. Dotelli, J. Power Sources 298, 46 (2015).

    Article  ADS  Google Scholar 

  16. R. Jacobs, T. Mayeshiba, J. Booske, and D. Morgan, Adv. Energy Mater. 8, 1702708 (2018).

    Article  Google Scholar 

  17. A. Yu. Suntsov, I. A. Leonidov, A. A. Markov, M. V. Patrakeev, Ya. N. Blinovskov, and V. L. Kozhevnikov, Russ. J. Phys. Chem. 83, 832 (2009).

    Article  Google Scholar 

  18. A. Yu. Suntsov, B. V. Politov, I. A. Leonidov, M. V. Patrakeev, and V. L. Kozhevnikov, Solid State Ionics 295, 90 (2016).

    Article  Google Scholar 

  19. B. V. Politov, A. Yu. Suntsov, I. A. Leonidov, M. V. Patrakeev, and V. L. Kozhevnikov, J. Alloys Compd. 727, 778 (2017).

    Article  Google Scholar 

  20. A. Yu. Suntsov, I. A. Leonidov, M. V. Patrakeev, and V. L. Kozhevnikov, J. Solid State Chem. 184, 1951 (2011).

    Article  ADS  Google Scholar 

  21. S. Streule, A. Podlesnyak, D. Sheptyakov, E. Pomjakushina, M. Stingaciu, K. Conder, M. Medarde, M. V. Patrakeev, I. A. Leonidov, V. L. Kozhevnikov, and J. Mesot, Phys. Rev. B 73, 094203 (2006).

    Article  ADS  Google Scholar 

  22. G. Kresse, M. Marsman, and J. Furthmüller, VASP – Vienna ab-initio Simulation Package, The Guide (Vienna, 2018).

    Google Scholar 

  23. S. Ganorkar, K. R. Priolkar, P. R. Sarode, and A. Banerjee, J. Appl. Phys. 110, 053923 (2011).

    Article  ADS  Google Scholar 

  24. I. A. Abrikosov, A. V. Ponomareva, P. Steneteg, S. A. Barannikova, and B. Alling, Curr. Opin. Solid State Mater. Sci. 20, 85 (2016).

    Article  ADS  Google Scholar 

  25. V. P. Zhukov, N. I. Medvedeva, and V. N. Krasilnikov, Int. J. Mod. Phys. B 32, 1850059 (2018).

    Article  ADS  Google Scholar 

  26. V. P. Zhukov and I. R. Shein, Phys. Solid State 60, 37 (2018).

    Article  ADS  Google Scholar 

  27. JANAF Thermochemical Tables, Ed. by R. Stull and H. Prophet (U.S. Dep. Commerce and National Bureau of Standards, Office Standard Reference Data, National Bureau of Standards, Washington, and D.C., 1971).

  28. R. A. Cox-Galhotra, A. Huq, J. P. Hodges, Ch. Yu, X. Wang, W. Gong, A. J. Jacobson, and S. McIntosh, Solid State Ionics 249–250, 34 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The calculations were performed on clusters URAN at the Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences and ATLAS at the Donostia International Physics Center (DIPC), San Sebastián, España.

The authors are grateful to collaborators of the abovementioned Computing Centers. The authors are grateful to Academician of the Russian Academy of Sciences V.L. Kozhevnikov and B.V. Politov for useful discussions.

Funding

This work was supported by the state budget of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zhukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.P., Chulkov, E.V. The Structure of Defects, the Electron Energy-Band Structure, and the Semiconductor–Metal Transition in PrBaCo2O5.5 Cobaltite: Ab Initio PAW Approach. Phys. Solid State 63, 395–404 (2021). https://doi.org/10.1134/S1063783421030197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421030197

Keywords:

Navigation