Skip to main content
Log in

Evolution of a Defect Structure during Creep Tests of Ultrafine-Grained Metals and Alloys Produced by Severe Plastic Deformation

  • MECHANICAL PROPERTIES, PHYSICS OF STRENGTH, AND PLASTICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structural factors that lead to a decrease in the mechanostability of ultrafine-grained (UFG) metals and alloys during creep tests at increased temperatures have been revealed using small-angle X-ray scattering, electron microscopy, and the measurements of the density. An important factor is found to be nanopores that form during severe plastic deformation. The development of these nanopores in grain boundaries, which form during the creep, occurs by a diffusion mechanism and leads to the fracture. The role of disperse inclusions and high-angle grain boundaries in the strength of UFG metals and alloys during their “short-time” and long-term loadings is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. I. Kopylov, Izv. Akad. Nauk SSSR, Met. 1, 115 (1981).

    Google Scholar 

  2. M. Gleiter, Nanostruct. Mater. 1, 1 (1992).

    Article  Google Scholar 

  3. R. A. Andrievski and A. M. Glezer, Phys. Usp. 52, 315 (2009).

    Article  ADS  Google Scholar 

  4. R. Z. Valiev and K. V. Aleksandrov, Nanostructured Metals Obtained by Intense Plastic Deformation (Logos, Moscow, 2002) [in Russian].

    Google Scholar 

  5. V. I. Betekhtin, V. Sklenička, I. Saxl, B. K. Kardashev, A. G. Kadomtsev, and M. V. Narykova, Phys. Solid State 52, 1629 (2010).

    Article  ADS  Google Scholar 

  6. M. Kvapilova, V. I. Kopylov, S. A. Nikulin, and S. V. Dobatkin, Acta Phys. Polon. A 122, 477 (2012).

    Google Scholar 

  7. V. I. Betekhtin, J. Dvorak, A. G. Kadomtsev, B. K. Kardashev, M. V. Narykova, G. K. Raab, V. Sklenička, and S. N. Faizova, Tech. Phys. Lett. 41, 80 (2015).

    Article  ADS  Google Scholar 

  8. V. I. Betekhtin, Yu. R. Kolobov, V. Sklenička, A. G. Kadomtsev, M. V. Narykova, J. Dvorak, E. V. Golosov, B. K. Kardashev, and I. N. Kuz’menko, Tech. Phys. 60, 66 (2015).

    Article  Google Scholar 

  9. R. A. Andrievski and A. V. Khatchoyan, Nanomaterials in Extreme Environments. Fundamentals and Applications (Springer Int., Switzerland, 2016).

    Book  Google Scholar 

  10. R. A. Andrievskii, Russ. Chem. Rev. 83, 365 (2014).

    Article  ADS  Google Scholar 

  11. V. I. Betekhtin, V. Sklenička, A. G. Kadomtsev, Yu. R. Kolobov, and M. V. Narykova, Phys. Solid State 59, 960 (2017).

    Article  ADS  Google Scholar 

  12. M. Kawasaki, V. Sklenička, and T. G. Langdon, J. Mater. Sci. 45, 271 (2010).

    Article  ADS  Google Scholar 

  13. V. F. Terent’ev, S. V. Dobatkin, S. A. Nikulin, V. I. Kopylov, S. O. Rogachev, and I. O. Bannykh, Deform. Razrush. Mater. 8, 26 (2010).

    Google Scholar 

  14. J. Dvorak, V. Sklenička, V. I. Betekhtin, A. G. Kadomtsev, P. Kral, and M. Svoboda, Mater. Sci. Eng. A 584, 103 (2013).

    Article  Google Scholar 

  15. V. I. Betekhtin, Yu. R. Kolobov, M. V. Narykova, E. V. Golosov, B. K. Kardashev, and A. G. Kadomtsev, Tech. Phys. 56, 1599 (2011).

    Article  Google Scholar 

  16. Yu. R. Kolobov, Nanotechnol. Russ. 4, 758 (2009).

    Article  Google Scholar 

  17. V. I. Betekhtin, A. G. Kadomtsev, V. Sklenička, and I. Saxl, Phys. Solid State 49, 1874 (2007).

    Article  ADS  Google Scholar 

  18. J. Dvorak, V. Sklenička, V. I. Betekhtin, A. G. Kadomtsev, P. Kral, M. Kvapilova, and M. Svoboda, Mater. Sci. Eng. A 584, 103 (2013).

    Article  Google Scholar 

  19. V. I. Betekhtin, A. G. Kadomtsev, V. Sklenička, and M. V. Narykova, Tech. Phys. Lett. 37, 977 (2011).

    Article  ADS  Google Scholar 

  20. V. Sklenička, V. I. Betekhtin, A. I. Petrov, A. G. Kadomtsev, and K. Kucharova, Scr. Mater. 25, 2159 (1991).

    Article  Google Scholar 

  21. V. Sklenička, J. Dvorak, and M. Svoboda, Mater. Sci. Eng. A 387–389, 696 (2004).

    Article  Google Scholar 

  22. V. Sklenička, J. Dvorak, P. Kral, Z. Stronawska, and M. Svoboda, Mater. Sci. Eng. A 410–411, 408 (2005).

    Article  Google Scholar 

  23. I. Saxl, V. Sklenička, L. Ilusova, M. Svoboda, J. Dvorak, and P. Kral, Mater. Sci. Eng. A 503, 82 (2009).

    Article  Google Scholar 

  24. V. Sklenička, J. Dvorak, P. Kral, M. Svoboda, M. Kvapilova, and T. G. Langdon, Mater. Sci. Eng. A 558, 403 (2012).

    Article  Google Scholar 

  25. R. Lapovok, D. Tomus, J. Mang, Y. Estin, and T. C. Lowe, Acta Mater. 57, 2909 (2009).

    Article  Google Scholar 

  26. J. Ribbe, G. Schmitz, D. Gundarev, Y. Estin, Y. Amouyal, and S. V. Divinski, Acta Mater. 61, 5477 (2013).

    Article  Google Scholar 

  27. S. V. Divinski, G. Reglitz, I. S. Golovin, M. Peterlechner, R. Lapovok, Y. Estin, and G. Wilde, Acta Mater. 82, 11 (2015).

    Article  Google Scholar 

  28. V. N. Perevzentsev, A. S. Pupynin, and A. E. Ogorodnikov, Tech. Phys. 63, 1492 (2018).

    Article  Google Scholar 

  29. J. Čizek, M. Janecek, O. Sbra, R. Kuzel, Z. Barnovska, I. Prochazka, and S. V. Dobatkin, Acta Mater. 59, 2322 (2011).

    Article  Google Scholar 

  30. V. V. Mishakin, V. N. Perevezentsev, M. Yu. Shcherban’, V. A. Klyushnikov, T. A. Gracheva, and T. A. Kuz’micheva, Russ. J. Nondestr. Test. 51, 374 (2015).

    Article  Google Scholar 

  31. S. V. Divinski, G. Reglitz, H. Rosner, Y. Estrin, and G. Wild, Acta Mater. 59, 1974 (2011).

    Article  Google Scholar 

  32. A. Guinier and G. Fournet, Small-Angle Scattering of X‑Rays (Wiley, New York, 1955).

    MATH  Google Scholar 

  33. Yu. R. Kolobov, G. P. Grabovetskaya, M. B. Ivanov, A. R. Zhilyaev, and R. Z. Valiev, Scr. Mater. 44, 873 (2001).

    Article  Google Scholar 

  34. D. A. Miller and T. G. Langdon, Metall. Trans. A 10, 1969 (1979).

    Google Scholar 

  35. P. G. Cheremskoi, V. V. Slezov, and V. I. Betekhtin, Pores in Solid State (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  36. M. B. Markushev and M. Y. Murashkin, Mater. Sci. Eng. A 367, 234 (2004).

    Article  Google Scholar 

  37. M. V. Markushev, in Proceedings of the International Conference on Strength and Destruction Materials and Structures, Orenburg,2008, Vol. 1, p. 162.

Download references

ACKNOWLEDGMENTS

A number of structural studies and creep tests were carried out at the Institute of Metal Physics (Brno, Czech Republic). The authors are grateful to collaborators of this Institute V. Sklenicka, J. Dvorak, P. Kral, and M. Svoboda who took part in joint studies of the evolution of the defect structure during creep of coarse-grained and UFG metals [5, 7, 8, 11, 14, 1720].

Funding

This work was supported by the Russian Scientific Foundation, project no. 19-12-00221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Narykova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betekhtin, V.I., Kadomtsev, A.G. & Narykova, M.V. Evolution of a Defect Structure during Creep Tests of Ultrafine-Grained Metals and Alloys Produced by Severe Plastic Deformation. Phys. Solid State 62, 318–324 (2020). https://doi.org/10.1134/S1063783420020067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420020067

Keywords:

Navigation