Skip to main content
Log in

Critical Properties in the Ising Model on a Triangular Lattice with the Variable Interlayer Exchange Interaction

  • LATTICE DYNAMICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Phase transitions and critical and thermodynamic properties of the three-dimensional antiferromagnetic Ising model on a layered triangular lattice with variable interlayer exchange interaction are studied by the replica algorithm of the Monte Carlo method. The studies are carried out for the ratios of the intralayer J1 and interlayer J2 exchange interactions in the range of r = J2/J1 = 0.01–1.0. It is established that a second-order phase transition is observed in the considered r interval. Using the finite size scaling theory, the static critical exponents of the heat capacity α, susceptibility γ, order parameter β, correlation radius ν, and Fisher index η are calculated. It is shown that the universality class of the critical behavior of this model is preserved in the interval of 0.05 < r ≤ 1.0. It was found that with a further decrease in the r value, a crossover from the three-dimensional critical behavior to the quasi-two-dimensional one is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Pergamon, Oxford, 1979).

    Google Scholar 

  2. Sh. Ma, Modern Theory of Critical Phenomena (Springer, London, 1976).

    Google Scholar 

  3. R. S. Gekht, Sov. Phys. Usp. 32, 871 (1989).

    Article  ADS  Google Scholar 

  4. K. Katsumata, H. Aruga Katori, S. Kimura, Y. Narumi, M. Hagiwara, and K. Kindo, Phys. Rev. B 82, 104402 (2010).

    Article  ADS  Google Scholar 

  5. E. H. Boubcheur and H. T. Diep, Phys. Rev. B 58, 5163 (1998).

    Article  ADS  Google Scholar 

  6. S. E. Korshunov, Phys. Rev. B 72, 144417 (2005).

    Article  ADS  Google Scholar 

  7. E. Z. Ising, Physica (Amsterdam) 31, 253 (1924).

    Google Scholar 

  8. G. H. Wannier, Phys. Rev. 79, 357 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. F. Newell, Phys. Rev. 79, 876 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  10. R. M. F. Houtapel, Physica (Amsterdam) 16, 425 (1950).

    Article  ADS  Google Scholar 

  11. G. A. Baker, Jr., B. G. Nickel, and D. I. Meiron, Phys. Rev. B 17, 1365 (1978).

    Article  ADS  Google Scholar 

  12. O. Heinonen and R. G. Petschek, Phys. Rev. B 40, 9052 (1989).

    Article  ADS  Google Scholar 

  13. M. L. Plumer, A. Mailhot, R. Ducharme, A. Caille, and H. T. Diep, Phys. Rev. B 47, 14312 (1993).

    Article  ADS  Google Scholar 

  14. A. Bunker, B. D. Gaulin, and C. Kallin, Phys. Rev. B 48, 861 (1993).

    Article  Google Scholar 

  15. N. Todoroki and S. Miyashita, J. Phys. Soc. Jpn. 73, 412 (2004).

    Article  ADS  Google Scholar 

  16. K. Hirakawa, H. Kadowaki, and K. Ubukoshi, J. Phys. Soc. Jpn. 52, 1814 (1983).

    Article  ADS  Google Scholar 

  17. N. Todoroki and Z. Miyashita, J. Phys. Soc. Jpn. 73, 412 (2004).

    Article  ADS  Google Scholar 

  18. H. Shiba, Prog. Teor. Phys. 64, 466 (1980).

    Article  ADS  Google Scholar 

  19. M. Kaburagi, T. Tonegawa, and J. Kanamori, J. Phys. Soc. Jpn. 51, 3857 (1982).

    Article  ADS  Google Scholar 

  20. P. Matsubara and S. Ikeda, Phys. Rev. B 28, 4064 (1983).

    Article  ADS  Google Scholar 

  21. P. Matsubara and S. Inawashira, J. Phys. Soc. Jpn. 53, 4373 (1984).

    Article  ADS  Google Scholar 

  22. H. Yoshizawa and K. Hirakawa, J. Phys. Soc. Jpn. 46, 448 (1980).

    Article  ADS  Google Scholar 

  23. E. Rastelli, S. Regina, and A. Tassi, Phys. Rev. 71, 174406 (2005).

    Article  ADS  Google Scholar 

  24. E. Mengotti, L. J. Heyderman, A. Bisig, A. Fraile Rodríguez, L. le Guyader, F. Nolting, and H. B. Braun, J. Appl. Phys. 105, 113113 (2009).

    Article  ADS  Google Scholar 

  25. A. Smerald and F. Mila, Phys. Rev. Lett. 115, 147202 (2015).

    Article  ADS  Google Scholar 

  26. S. Mahmoudian, L. Rademaker, A. Ralko, S. Fratini, and V. Dobrosavljević, Phys. Rev. Lett. 115, 025701 (2015).

    Article  ADS  Google Scholar 

  27. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. A (Amsterdam, Neth.) 507, 210 (2018).

  28. A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. K. Badiev, and Ya. K. Abuev, Phys. Solid State 59, 1103 (2017).

    Article  ADS  Google Scholar 

  29. M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, Phys. A (Amsterdam, Neth.) 521, 543 (2019).

  30. A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, M. K. Badiev, and M. K. Mazagaeva, Phys. Solid State 61, 1107 (2019).

    Article  ADS  Google Scholar 

  31. M. K. Badiev, A. K. Murtazaev, and M. K. Ramazanov, J. Exp. Theor. Phys. 123, 623 (2016).

    Article  ADS  Google Scholar 

  32. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. B (Amsterdam, Neth.) 476, 1 (2015).

  33. M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, and M. K. Badiev, Phase Trans. 91, 610 (2018).

    Article  Google Scholar 

  34. Monte Carlo Simulation in Statistical Physics, Ed. by K. Binder and D. W. Heermann (Springer, Berlin, 2010).

    MATH  Google Scholar 

  35. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

    Article  ADS  Google Scholar 

  36. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 106, 86 (2017).

    Article  ADS  Google Scholar 

  37. J. C. LeGuillou and J. Zinn-Justin, J. Phys. Lett. 46, 137 (1985).

    Article  Google Scholar 

  38. M. F. Collins, Magnetic Critical Scattering (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 19-02-00153-a, 18-32-20098-mol-a-ved and 18-32-00391-mol-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Badiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murtazaev, A.K., Ramazanov, M.K. & Badiev, M.K. Critical Properties in the Ising Model on a Triangular Lattice with the Variable Interlayer Exchange Interaction. Phys. Solid State 61, 1854–1859 (2019). https://doi.org/10.1134/S1063783419100263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419100263

Keywords:

Navigation