Skip to main content
Log in

A Possible Liquid–Liquid Transition in a Ga–In Melt Introduced into an Opal Matrix

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature evolution of the Ga94In6 liquid alloy introduced into an opal matrix has been studied by the NMR method in the temperature range 300–155 K. The temperature dependences of the position and the intensity of the NMR signals from 71Ga, 69Ga, and 115In isotopes have been measured upon cooling and heating of the nanocomposite. The 71Ga NMR line has been observed to be split into two components on cooling below 176 K with a transfer of the intensity to the high-frequency component. The results demonstrate an induced by nanoconfinement shift of the eutectic point in the alloy and the liquid–liquid phase transition in the indium depleted part of the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. Ito, C. T. Moynihan, and C. A. Angell, Nature (London, U.K.) 398, 492 (1999).

    Article  ADS  Google Scholar 

  2. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C. Y. Mou, and S. H. Chen, Proc. Natl. Acad. Sci. U. S. A. 104, 424 (2007).

    Article  ADS  Google Scholar 

  3. H. E. Stanley and O. Mishima, Nature (London, U.K.) 396, 329 (1998).

    Article  ADS  Google Scholar 

  4. Y. Katayama, Y. Inamura, T. Mizutani, M. Yamakata, W. Utsumi, and O. Shimomura, Science (Washington, DC, U. S.) 306, 848 (2004).

    Article  ADS  Google Scholar 

  5. I. Saika-Voivod, P. H. Poole, and F. Sciortino, Nature (London, U.K.) 412, 514 (2001).

    Article  ADS  Google Scholar 

  6. G. N. Greaves, M. C. Wilding, S. Fearn, D. Langstaff, F. Kargl, S. Cox, Q. V. Van, O. Majerus, C. J. Benmore, R. Weber, C. M. Martin, and L. Hennet, Science (Washington, DC, U. S.) 322, 566 (2008).

    Article  ADS  Google Scholar 

  7. A. Cadien, Q. Y. Hu, Y. Meng, Y. Q. Cheng, M. W. Chen, J. F. Shu, H. K. Mao, and H. W. Sheng, Phys. Rev. Lett. 110, 125503 (2013).

    Article  ADS  Google Scholar 

  8. P. Debenedetti, S. A. Rice, and A. R. Dinner, Liquid Polymorphism, Ed. by H. E. Stanley (Wiley, Hoboken, NJ, 2013).

    Google Scholar 

  9. R. Poloni, S. de Panfilis, A. di Cicco, G. Pratesi, E. Principi, A. Trapananti, and A. Filipponi, Phys. Rev. B 71, 184111 (2005).

    Article  ADS  Google Scholar 

  10. L. Bosio, J. Chem. Phys. 68, 1221 (1978).

    Article  ADS  Google Scholar 

  11. S. Ayrinhac, M. Gauthier, G. le Marchand, M. Mo-rand, F. Bergame, and F. Decremps, J. Phys.: Condens. Matter 27, 275103 (2015).

    Google Scholar 

  12. L. H. Xiong, X. D. Wang, Q. Yu, H. Zhang, F. Zhang, Y. Sun, Q. P. Cao, H. L. Xie, T. Q. Xiao, D. X. Zhang, C. Z. Wang, K. M. Ho, Y. Ren, and J. Z. Jiang, Acta Mater. 128, 304 (2017).

    Article  Google Scholar 

  13. C. L. Chen, J.-G. Lee, K. Arakawa, and H. Mori, Appl. Phys. Lett. 98, 083198 (2011).

    Google Scholar 

  14. C. Tien, E. V. Charnaya, W. Wang, Y. A. Kumzerov, and D. Michel, Phys. Rev. B 74, 024116 (2006).

    Article  ADS  Google Scholar 

  15. D. A. C. Jara, M. F. Michelon, A. Antonelli, and M. de Koning, J. Chem. Phys. 130, 221101 (2009).

    Article  ADS  Google Scholar 

  16. R. Li, G. Sun, and L. Xu, J. Chem. Phys. 145, 054506 (2016).

    Article  ADS  Google Scholar 

  17. F.-Q. Zu, Metals 5, 395 (2015).

    Article  Google Scholar 

  18. Q. Yu, X. D. Wang, Y. Su, Q. P. Cao, Y. Ren, D. X. Zhang, and J. Z. Jiang, Phys. Rev. B 95, 224203 (2017).

    Article  ADS  Google Scholar 

  19. Q. Yu, A. S. Ahmad, K. Ståhl, X. D. Wang, Y. Su, K. Glazyrin, H. P. Liermann, H. Franz, Q. P. Cao, D. X. Zhang, and J. Z. Jiang, Sci. Rep. 7, 1139 (2017).

    Article  ADS  Google Scholar 

  20. T. J. Anderson and I. Ansara, J. Phase Equilib. 12, 64 (1991).

    Article  Google Scholar 

  21. A. L. Pirozerskii, E. V. Charnaya, M. K. Lee, L. J. Chang, A. I. Nedbai, Y. A. Kumzerov, A. V. Fokin, M. I. Sa-moilovich, E. L. Lebedeva, and A. S. Bugaev, Acoust. Phys. 63, 306 (2015).

    Google Scholar 

  22. E. V. Charnaya, D. Michel, C. Tien, Y. A. Kumzerov, and D. Yaskov, J. Phys.: Condens. Matter 15, 5469 (2003).

    ADS  Google Scholar 

  23. E. V. Charnaya, T. Loeser, D. Michel, C. Tien, D. Yas-kov, and Y. A. Kumzerov, Phys. Rev. Lett. 88, 097602 (2002).

    Article  ADS  Google Scholar 

  24. E. V. Charnaya, C. Tien, W. Wang, M. K. Lee, D. Mi-chel, D. Yaskov, S. Y. Sun, and Y. A. Kumzerov, Phys. Rev. B 72, 035406 (2005).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-57-52009. The measurements were carried out in part in the Resource center “Center for diagnostics of functional materials for medicine, pharmacology, and nanoelectronics” at the Research Park of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Charnaya.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nefedov, D.Y., Charnaya, E.V., Uskov, A.V. et al. A Possible Liquid–Liquid Transition in a Ga–In Melt Introduced into an Opal Matrix. Phys. Solid State 60, 2640–2644 (2018). https://doi.org/10.1134/S1063783419010207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419010207

Navigation