Skip to main content
Log in

Growth and Structural, Magnetic, and Magnetooptical Properties of ZnO Films Doped with a Fe57 3d Impurity

  • Surface Physics, Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

ZnO films obtained by high-frequency magnetron sputtering and doped with a Fe57 metallic 3d impurity by the diffusion method are studied. The type of local environment of Fe57 impurity atoms on varying the deposition parameters of ZnO films is determined by Mössbauer spectroscopy. It is established that the ground state of Fe57 impurity atoms corresponds to metallic iron in the magnetically ordered state and there is a small fraction of Fe57 atoms with a local environment corresponding to the complex oxide Fe3O4, having the magnetically ordered state; there is also a fraction of iron atoms in the paramagnetic state. The magnetic and magnetooptical parameters of the films were measured using magnetooptic Kerr effect. The spectral dependences of the polar magnetooptic Kerr effect in ZnO(Fe57) films are measured in a photon energy range of 1.5–4.5 eV and simulated by the effective-medium method. It is established that ZnO(Fe57) possess an easy-plane magnetic anisotropy with a magnetization lying in the film plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zhan, W. Wang, Z. Xie, Z. Zhang, P. Zhang, and B. Wang, Appl. Phys. Lett. 101, 031913 (2012).

    Article  ADS  Google Scholar 

  2. S. Chawla, M. Saroha, and R. K. Kotnala, Electron. Mater. Lett. 10, 73 (2014).

    Article  Google Scholar 

  3. G. M. Rai, M. A. Iqbal, Y. B. Xu, I. G. Will, and Z. C. Huang, J. Magn. Magn. Mater. 323, 3239 (2011).

    Article  ADS  Google Scholar 

  4. X. S. Wang, Z. C. Wu, J. F. Webb, and Z. G. Liu, Appl. Phys. A 77, 561 (2003).

    Article  ADS  Google Scholar 

  5. T. A. Abdel-Baset, Y.-W. Faóng, B. Anis, Ch.-G. Duan, and M. Abdel-Hafiez, Nanoscale Res. Lett. 11, 115 (2016).

    Article  ADS  Google Scholar 

  6. Bo Gu, N. Bulut, and S. Mackawa, J. Appl. Phys. 104, 103906 (2008).

    Article  ADS  Google Scholar 

  7. X. Xue, L. Liu, Zh. Wang, and Y. Wu, J. Appl. Phys. 115, 033902 (2014).

    Article  ADS  Google Scholar 

  8. P. Zhan, W. Wang, Z. Xie, Z. Zhang, and B. Wang, Appl. Phys. Lett. 101, 031913 (2012).

    Article  ADS  Google Scholar 

  9. E. J. Kan, F. Wu, H. Wu, Ch. Xiao, H. Xiang, and K. Deng, Appl. Phys. Lett. 102, 022422 (2013).

    Article  ADS  Google Scholar 

  10. G. M. D. Coye, M. Vencatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).

    Article  ADS  Google Scholar 

  11. K. Jayanthi, S. Chawla, A. Jjshi, Z. H. Khan, and R. K. Kotnala, J. Phys. Chem. C 114, 18429 (2010).

    Article  Google Scholar 

  12. M. M. Mezdrogina, A. Ya. Vinogradov, M. V. Eremenko, V. S. Levitskii, E. I. Terukov, and Yu. V. Kozhanova, Opt. Spectrosc. 121, 220 (2016).

    Article  ADS  Google Scholar 

  13. M. M. Mezdrogina, A. Ya. Vinogradov, R. V. Kuzmin, V. S. Levitski, Yu. V. Kozanova, N. V. Lyanguzov, and M. V. Chukichev, Semiconductors 50, 1304 (2016).

    Article  ADS  Google Scholar 

  14. G. X. Du, S. Saito, and M. Takahashi, Rev. Sci. Instrum. 83, 013103 (2012).

    Article  ADS  Google Scholar 

  15. M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).

    Article  ADS  Google Scholar 

  16. J. C. Maxwell-Garnett, Philos. Trans. R. Soc., A 203, 385 (1904); Philos. Trans. R. Soc., A 205, 237 (1906).

    Article  ADS  Google Scholar 

  17. G. S. Krinchik, J. Appl. Phys. 35, 1089 (1964).

    Article  ADS  Google Scholar 

  18. T. C. Choy, Effective Medium Theory, Principles and Applications (Clarendon, Oxford, 1999).

    Google Scholar 

  19. D. S. Score, M. Alshammari, and Q. Feng, J. Phys.: Conf. Ser. 200, 062024 (2010).

    Google Scholar 

  20. F. J. Kahn, P. S. Pershan, and J. P. Remeika, Phys. Rev. 186, 891 (1969).

    Article  ADS  Google Scholar 

  21. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP Publ., Bristol, Philadelphia, 1997).

    Book  Google Scholar 

  22. H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. 36, 6237 (1997).

    Article  ADS  Google Scholar 

  23. P. B. Johnson and R. W. Christy, Phys. Rev. 9, 5056 (1974).

    Article  ADS  Google Scholar 

  24. G. S. Krinchik and V. A. Artem’ev, Sov. Phys. JETP 26, 1080 (1967).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Mezdrogina.

Additional information

Original Russian Text © M.M. Mezdrogina, A.S. Aglikov, V.G. Semenov, Yu.V. Kozhanova, S.G. Nefedov, L.A. Shelukhin, V.V. Pavlov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 3, pp. 596–602.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezdrogina, M.M., Aglikov, A.S., Semenov, V.G. et al. Growth and Structural, Magnetic, and Magnetooptical Properties of ZnO Films Doped with a Fe57 3d Impurity. Phys. Solid State 60, 603–609 (2018). https://doi.org/10.1134/S1063783418030186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418030186

Navigation