Skip to main content
Log in

On the Formation Mechanism of Interference Rings in the Ablation Area on the Condensed Medium Surface under Irradiation with Femtosecond Laser Pulses

  • Surface Physics, Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dynamics of Newton interference rings appearing in the ablation area on the surface of various condensed media under irradiation with femtosecond laser pulses is analyzed (according to published data on fs ablation). The data on the refractive index evolution in the expanding material cloud from the metal, semiconductor, and dielectric surface, obtained by interference pattern processing. The mechanism of the concentration of the energy absorbed by a medium from the laser beam in the thin layer under the irradiated sample surface is considered. The appearance of the inner layer with increased energy release explains why the ablation process from the metal, semiconductor, and dielectric surface, despite the differences in their compositions and radiation absorption mechanisms, occurs similarly, i.e., with the formation of a thin shell at the outer ablation cloud boundary, which consists of a condensed medium reflecting radiation and, together with the target surface, forms a structure necessary for interference formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. F. Ready, Effects of High Power Laser Radiation (Academic, New York, 1971).

    Google Scholar 

  2. S. I. Anisimov and B. S. Luk’yanchuk, Phys. Usp. 45, 293 (2002).

    Article  Google Scholar 

  3. E. G. Gamaly, Phys. Rep. 508, 91 (2011).

    Article  ADS  Google Scholar 

  4. A. A. Ionin, S. I. Kudryashov, and A. A. Samokhin, Phys. Usp. 60, 149 (2017).

    Article  ADS  Google Scholar 

  5. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, J. Opt. Soc. Am. B 13, 459 (1996).

    Article  ADS  Google Scholar 

  6. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, Phys. Plasmas 9, 949 (2002).

    Article  ADS  Google Scholar 

  7. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, Phys. Rev. Lett. 81, 224 (1998).

    Article  ADS  Google Scholar 

  8. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, Appl. Surf. Sci. 127–129, 755 (1998).

    Article  Google Scholar 

  9. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, Springer Ser. Chem. Phys. 63, 316 (1998).

    Article  Google Scholar 

  10. D. von der Linde and K. Sokolowski-Tinten, Appl. Surf. Sci. 154–155, 755 (2000).

    Google Scholar 

  11. N. Stojanovic, Dissertation (Univ. Duisburg-Essen, 2008).

    Google Scholar 

  12. M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, Appl. Phys. Lett. 105, 112902 (2014).

    Article  ADS  Google Scholar 

  13. M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, in Frontiers in Optics, October 19–23, 2014, Tucson, AZ (Opt. Soc. Am., 2014), p. JTu3A–2.

    Google Scholar 

  14. I. Carrasco-Garcia, J. M. Vadillo, and J. J. Laserna, Spectrochim. Acta B 113, 30 (2015).

    Article  ADS  Google Scholar 

  15. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 121, 737 (2015).

    Article  ADS  Google Scholar 

  16. I. Carrasco-García, J. M. Vadillo, and J. J. Laserna, Spectrochim. Acta B 131, 1 (2017).

    Article  ADS  Google Scholar 

  17. Yu. V. Senatskii, Cand. Sci. (Phys. Math.) Dissertation (Phys. Inst. Acad. Sci., Moscow, 1970).

    Google Scholar 

  18. V. A. Batanov, F. V. Bunkin, A. M. Prokhorov, and V. B. Fedorov, Sov. Phys. JETP 36, 311 (1972).

    ADS  Google Scholar 

  19. V. S. Zuev and Yu. V. Senatsky, Bull. Lebedev Phys. Inst. 42, 102 (2015).

    Article  ADS  Google Scholar 

  20. N. E. Bykovsky, S. M. Pershin, A. A. Samokhin, and Yu. V. Senatsky, Quantum Electron. 46, 128 (2016).

    Article  ADS  Google Scholar 

  21. N. A. Inogamov, A. M. Oparin, Yu. V. Petrov, N. V. Shaposhnikov, S. I. Anisimov, D. fon der Linde, and Yu. Maier-ter-Fen, JETP Lett. 69, 310 (1999).

    Article  ADS  Google Scholar 

  22. S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishikhara, Yu. V. Petrov, and V. A. Khokhlov, Mat. Model. 18, 11 (2006).

    Google Scholar 

  23. H. Takayama and T. Maruyama, Appl. Surf. Sci. 261, 705 (2012).

    Article  ADS  Google Scholar 

  24. N. E. Bykovskii, PhIAS Preprint No. 5 (Phys. Inst. Acad. Sci., Moscow, 2016).

    Google Scholar 

  25. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996; Fizmatgiz, Moscow, 1963).

    MATH  Google Scholar 

  26. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, Chem. Phys. 251, 237 (2000).

    Article  ADS  Google Scholar 

  27. S. I. Kudryashov and V. I. Emel’yanov, JETP Lett. 73, 666 (2001).

    Article  ADS  Google Scholar 

  28. M. Kandyla, PhD Dissertation (Harvard Univ., Cambridge, MA, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Bykovskii.

Additional information

Original Russian Text © N.E. Bykovskii, Yu.V. Senatskii, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 2, pp. 396–404.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykovskii, N.E., Senatskii, Y.V. On the Formation Mechanism of Interference Rings in the Ablation Area on the Condensed Medium Surface under Irradiation with Femtosecond Laser Pulses. Phys. Solid State 60, 404–411 (2018). https://doi.org/10.1134/S1063783418020087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418020087

Navigation