Skip to main content
Log in

Influence of plastic deformation on fracture of an aluminum single crystal under shock-wave loading

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The plastic deformation and the onset of fracture of single-crystal metals under shock-wave loading have been studied using aluminum as an example by the molecular dynamics method. The mechanisms of plastic deformation under compression in a shock wave and under tension in rarefaction waves have been investigated. The influence of the defect structure formed in the compression wave on the spall strength and the fracture mechanism has been analyzed. The dependence of the spall strength on the strain rate has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Yu. Klimenko and A. N. Dremin, Dokl. Akad. Nauk SSSR 251(4–6), 1379 (1980) [Sov. Phys. Dokl. 25 (4), 288 (1980)].

    Google Scholar 

  2. B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, Phys. Rev. A: At., Mol., Opt. Phys. 22, 249 (1980).

    Google Scholar 

  3. T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Springer, New York, 2003).

    Google Scholar 

  4. B. Cao, E. M. Bringa, and M. A. Meyers, Metall. Mater. Trans. A 38, 2683 (2007).

    Google Scholar 

  5. V. V. Stegaĭlov and A. V. Yanilkin, Zh. Éksp. Teor. Fiz. 131(6), 1064 (2007) [JETP 104 (6), 928 (2007)].

    Google Scholar 

  6. G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, J. Appl. Phys. 90, 136 (2001).

    Article  ADS  Google Scholar 

  7. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1989).

    Google Scholar 

  8. A. A. Valuev, G. É. Norman, and V. Yu. Podlipchuk, in Mathematical Simulation: Physical and Chemical Properties of Substances, Ed. by A. A. Samarskiĭ and N. N. Kalitkin (Nauka, Moscow, 1989), p. 5 [in Russian].

    Google Scholar 

  9. D. L. Belashchenko, Computer Simulation of Liquid and Amorphous Substances (Moscow State Institute of Steel and Alloys, Moscow, 2005).

    Google Scholar 

  10. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B: Condens. Matter 63, 224106 (2001).

    ADS  Google Scholar 

  11. X.-Y. Liu, F. Ercolessi, and J. B. Adams, Modell. Simul. Mater. Sci. Eng. 12, 665 (2004).

    Article  ADS  Google Scholar 

  12. S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  MATH  ADS  Google Scholar 

  13. M. A. Mogilevskii and I. O. Mynkin, Fiz. Goreniya Vzryva 24(6), 106 (1988) [Combust., Explos. Shock Waves 24 (6), 738 (1988)].

    Google Scholar 

  14. E. M. Bringa, H. M. Zbib, J. M. McNaney, and B. A. Remington, Appl. Phys. Lett. 89, 171918 (2006).

    Article  ADS  Google Scholar 

  15. C. Kelchner, S. Plimpton, and J. Hamilton, Phys. Rev. B: Condens. Matter 58, 11085 (1998).

    ADS  Google Scholar 

  16. A. M. Meyers, Dynamics Behavior of Materials (Wiley Interscience, New York, 1994).

    Book  Google Scholar 

  17. H. M. Zbib, T. D. Díaz de la Rubia, M. Rhee, and J. P. Hirth, J. Nucl. Mater. 276, 154 (2000).

    Article  ADS  Google Scholar 

  18. J. Belak, J. Comput.-Aided Mater. Des. 5, 193 (1998).

    Article  ADS  Google Scholar 

  19. A. Yu. Kuksin, G. E. Norman, V. V. Stegailov, and A. V. Yanilkin, AIP Conf. Proc. 955, 317 (2007).

    Article  ADS  Google Scholar 

  20. A. Yu. Kuksin, V. V. Stegaĭlov, and A. V. Yanilkin, Fiz. Tverd. Tela (St. Petersburg) 50(11), 1984 (2008) [Phys. Solid State 50 (11), 2069 (2008)].

    Google Scholar 

  21. S. N. Zhurkov, V. S. Kuksenko, and V. A. Petrov, Dokl. Akad. Nauk SSSR 259, 1350 (1981) [Sov. Phys. Dokl. 26, 755 (1981)].

    Google Scholar 

  22. A. Yu. Kuksin and A. V. Yanilkin, Dokl. Akad. Nauk 413(4–6), 615 (2007) [Dokl. Phys. 52 (4), 186 (2007)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Zhilyaev.

Additional information

Original Russian Text © P.A. Zhilyaev, A.Yu. Kuksin, V.V. Stegaĭlov, A.V. Yanilkin, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 8, pp. 1508–1512.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhilyaev, P.A., Kuksin, A.Y., Stegaĭlov, V.V. et al. Influence of plastic deformation on fracture of an aluminum single crystal under shock-wave loading. Phys. Solid State 52, 1619–1624 (2010). https://doi.org/10.1134/S1063783410080093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410080093

Keywords

Navigation