Skip to main content
Log in

Thermoelectric properties of layered ferrocuprates LnBaCuFeO5 + δ (Ln= La, Pr, Nd, Sm, Gd-Lu)

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electrical resistivity ρ and the thermopower S of ceramic materials LnBaCuFeO5 + δ (Ln= La, Pr, Nd, Sm, Gd-Lu) are measured in air at temperatures in the range from 300 to 1100 K. All the studied ferrocuprates are p-type semiconductors. The electrical resistivity ρ and the thermopower S of these compounds increase with a decrease in the radius of the Ln 3+ cation (with an increase in the number of 4f electrons n in Ln 3+). The nonmonotonic behavior of the dependences ρ=f(n) and S=f(n) indicates that the electrical properties of the layered ferrocuprates LnBaCuFeO5 + δ depend on the electronic configuration of the Ln 3+ cation. The power factors P calculated for the LnBaCuFeO5 + δ ceramic materials from the experimental values of ρ and S increase with increasing temperature and, at T = 1000 K, reach the maximum values P = 102.0 and 54.1 µW m−1 K−2 for Ln = Pr(4f 2) and Sm(4f 5), respectively, and become close to each other and equal to 30–35 µW m−1 K−2 for Ln = Gd(4f 7), Dy(4f 9), and Ho(4f 10).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CRC Handbook of Thermoelectrics, Ed. by D. M. Rowe (CRC Press, Boca Raton, FL, United States, 1995).

    Google Scholar 

  2. A. O. Epremyan, V. M. Arutyunyan, and A. I. Vaganyan, Al’tern. Énerg. Ékol., No. 5, 7 (2005).

  3. N. R. Dilley, E. D. Bauer, M. B. Maplea, and B. C. Sales, J. Appl. Phys. 88, 1948 (2000).

    Article  ADS  Google Scholar 

  4. O. Yamashita, S. Tomiyoshi, and N. Sadatomi, J. Mater. Sci. 38, 1623 (2003).

    Article  Google Scholar 

  5. Oxide Thermoelectrics, Ed. by K. Koumoto, I. Terasaki, and N. Murayama (Research Signpost, Trivandrum, India, 2002).

    Google Scholar 

  6. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B: Condens. Matter 56, R12685 (1997).

  7. K. Park, K. U. Yang, H. C. Kwon, J.-G. Kim, and W. S. Cho, J. Alloys Compd. 419, 213 (2006).

    Article  Google Scholar 

  8. K. Iwasaki, H. Yamane, J. Takahashi, S. Kubota, T. Nagasaki, Y. Arita, Y. Nishi, T. Matsui, and M. Shimada, J. Phys. Chem. Solids 66, 303 (2005).

    Article  ADS  Google Scholar 

  9. S. Li, R. Funahashi, I. Matsubara, K. Yeno, S. Sodeoka, and H. Yamada, Chem. Mater. 12, 2424 (2000).

    Article  Google Scholar 

  10. D. Wang, L. Chen, Q. Wang, and J. Li, J. Alloys Compd. 376, 58 (2004).

    Article  Google Scholar 

  11. Y. Liu, Y. Lin, Z. Shi, and C.-W. Nan, J. Am. Ceram. Soc. 88, 1337 (2005).

    Article  Google Scholar 

  12. M. Yasukawa, S. Itoh, and T. Kono, J. Alloys Compd. 390, 250 (2005).

    Article  Google Scholar 

  13. K. Iwasaki, T. Ito, M. Yoshino, T. Matsui, T. Nagasaki, and Y. Arita, J. Alloys Compd. 430, 297 (2007).

    Article  Google Scholar 

  14. J.-W. Moon, Y. Masuda, W.-S. Seo, and K. Koumoto, Mater. Sci. Eng., B 85, 70 (2001).

    Article  Google Scholar 

  15. T. He, J. Chen, T. G. Calvarese, and M. A. Subramanian, Solid State Sci. 8, 467 (2006).

    Article  ADS  Google Scholar 

  16. R. Robert, L. Bocher, L. Trottmann, A. Reller, and A. Weidenkaff, J. Solid State Chem. 179, 3893 (2006).

    Article  ADS  Google Scholar 

  17. M. Pissas, C. Mitros, G. Kallias, V. Psycharis, A. Simopoulos, A. Kostikas, and D. Niarchos, Physica C (Amsterdam) 192, 35 (1992).

    ADS  Google Scholar 

  18. J. Linden, M. Kochi, K. Lehmus, T. Pietari, M. Karppinen, and H. Yamauchi, J. Solid State Chem. 166, 118 (2002).

    Article  ADS  Google Scholar 

  19. A. W. Mombrú, J. B. Marimon da Cunha, A. E. Goeta, F. M. Araúujo-Moreira, P. N. Lisboa-Filho, H. Pardo, and K. H. Andersen, Matéria 8, 294 (2003).

    Google Scholar 

  20. A. I. Klyndyuk and E. A. Chizhova, Neorg. Mater. 42(5), 611 (2006) [Inorg. Mater. 42 (5), 550 (2006)].

    Article  Google Scholar 

  21. L. Er-Rakho, C. Michel, F. Studer, and B. Raveau, J. Phys. Chem. Solids 48, 377 (1987).

    Article  ADS  Google Scholar 

  22. L. Er-Rakho, N. Nguyen, A. Ducouret, A. Samdi, and C. Michel, Solid State Sci. 7, 165 (2005).

    Article  ADS  Google Scholar 

  23. R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 946 (1969).

    Article  Google Scholar 

  24. E. A. Chizhova and A. I. Klyndyuk, Vestsi Nats. Akad. Nauk Belarusi, Ser. Khim. Navuk, No. 4, 5 (2007).

  25. A. K. Tripathi and H. B. Lal, Mater. Res. Bull. 15, 233 (1980).

    Article  Google Scholar 

  26. B. F. Dzhurinskioe, Zh. Neorg. Khim. 25, 79 (1980) [J. Inorg. Chem. 25, 41 (1980)].

    Google Scholar 

  27. A. I. Klyndyuk, Zh. Neorg. Khim. 52(3), 370 (2007) [Russ. J. Inorg. Chem. 52 (3), 321 (2007)].

    Google Scholar 

  28. N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 1979; Mir, Moscow, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Klyndyuk.

Additional information

Original Russian Text © A.I. Klyndyuk, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 2, pp. 237–242.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klyndyuk, A.I. Thermoelectric properties of layered ferrocuprates LnBaCuFeO5 + δ (Ln= La, Pr, Nd, Sm, Gd-Lu). Phys. Solid State 51, 250–254 (2009). https://doi.org/10.1134/S1063783409020073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409020073

PACS numbers

Navigation