Skip to main content
Log in

Phase transitions and multidomain states in magnetic nanostructures with competing anisotropies

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The evolution of the magnetic states in nanostructures with competing surface and bulk anisotropies was studied under a variation in the applied magnetic field. For spatially uniform magnetic states, the energy functional reduces to the energy of a bulk magnet in which the effective anisotropy depends on the thickness of the ferromagnetic layer. This dependence results in spin reorientation as the nanolayer thickness varies. The lines of first-order phase transitions and the equilibrium parameters of multidomain structures and domains of competing phases were determined. The calculated magnetic phase diagrams are used to analyze magnetic states and to construct magnetization curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. I. Martin, J. Nogues, K. Liu, J. L. Vicente, and I. K. Schuller, J. Mang. Magn. Mater. 256, 449 (2003).

    Article  ADS  Google Scholar 

  2. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003).

    Article  ADS  Google Scholar 

  3. S. D. Bader, Surf. Sci. 500, 172 (2002).

    Article  Google Scholar 

  4. H. Zabel, J. Phys.: Condens. Matter 11, 9303 (1999).

    Article  ADS  Google Scholar 

  5. E. W. Plummer, I. R. Matzdorf, A. V. Melechko, J. P. Pierce, and J. Zhang, Surf. Sci. 500, 1 (2002).

    Article  Google Scholar 

  6. M. Takahashi, M. Tsunoda, and H. Shoji, Vacuum 59, 814 (2000).

    Article  Google Scholar 

  7. J. Gui, H. Tang, Li-P. Wang, G. C. Rauch, Z. Boutaghou, J. Hanchi, Th. Pitchford, and P. Segar, J. Appl. Phys. 87(9), 5383 (2000).

    Article  ADS  Google Scholar 

  8. K. E. Johnson, J. Appl. Phys. 87(9), 5365 (2000).

    Article  ADS  Google Scholar 

  9. Th. D. Howell, P. A. McEwen, and A. Patapoutian, J. Appl. Phys. 87(9), 5371 (2000).

    Article  ADS  Google Scholar 

  10. J. Numazawa and H. Ohshima, J. Magn. Magn. Mater. 176(1), 1 (1997).

    Article  ADS  Google Scholar 

  11. S. V. Vonsovskiĭ, Magnetism (Nauka, Moscow 1971; Wiley, New York, 1974).

    Google Scholar 

  12. M. T. Johnson, P. J. H. Bloemen, F. J. A. den Breeder, and J. J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).

    Article  ADS  Google Scholar 

  13. P. Poulopoulos and K. Baberschke, J. Phys.: Condens. Matter 11, 9495 (1999).

    Article  ADS  Google Scholar 

  14. W. J. M. de Jonge, P. G. H. Bloemen, and F. J. A. den Broeder, Ultrathin Magnetic Structures (Springer-Verlag, Berlin, 1994), Vol. 1.

    Google Scholar 

  15. A. N. Bogdanov, U. K. Rößsler, and K. H. Müller, J. Magn. Magn. Mater. 242–245, 594 (2002).

    Article  Google Scholar 

  16. A. Thiaville and A. Fert, J. Magn. Magn. Mater. 113, 161 (1992).

    Article  ADS  Google Scholar 

  17. M. Gester, C. Daboo, R. J. Hicken, S. J. Gray, A. Ercole, and J. A. C. Bland, J. Appl. Phys. 80(1), 347 (1996).

    Article  ADS  Google Scholar 

  18. C. J. Gutierreza, J. J. Krebs, and G. A. Prinz, Appl. Phys. Lett. 61(20), 2476 (1992).

    Article  ADS  Google Scholar 

  19. D. A. Allwood, N. Vernier, G. Xiong, M. D. Cooke, D. Atkinson, C. C. Faulkner, and R. P. Cowburn, Appl. Phys. Lett. 81(21), 4005 (2002).

    Article  ADS  Google Scholar 

  20. A. F. Isakovic, J. Berezovsky, P. A. Crowella, L. C. Chen, D. M. Carr, B. D. Schultz, and C. J. Palmstroüm, J. Appl. Phys. 89(11), 6674 (2001).

    Article  ADS  Google Scholar 

  21. W. Weber, R. Allenspach, and A. Bischof, Appl. Phys. Lett. 70(4), 520 (1997).

    Article  ADS  Google Scholar 

  22. S. M. Zhou, K. Liu, and C. L. Chien, Phys. Rev. B: Condens. Matter 58, 717 (1998).

    Google Scholar 

  23. H.-W. Zhao, W. N. Wang, Y. J. Wang, W. S. Zhan, and J. Q. Xiao, J. Appl. Phys. 91(10), 6893 (2002).

    Article  ADS  Google Scholar 

  24. Y. J. Tang, X. Zhou, X. Chen, B. Q. Liang, and W. S. Zhan, J. Appl. Phys. 88(4), 2054 (2000).

    Article  ADS  Google Scholar 

  25. P. Blomqvist, K. M. Krishnana, and Er. Girt, J. Appl. Phys. 95(12), 8487 (2004).

    Article  ADS  Google Scholar 

  26. T. Mewesa, H. Nembach, M. Rickart, and B. Hillebrands, J. Appl. Phys. 95(10), 5324 (2004).

    Article  ADS  Google Scholar 

  27. T. Mewes, B. Hillebrands, and R. L. Stamps, Phys. Rev. B: Condens. Matter 68(1), 184418 (2003).

    Google Scholar 

  28. R. P. Michel, A. Chaiken, C. T. Wang, and L. E. Johnson, Phys. Rev. B: Condens. Matter 58(13), 8566 (1998).

    ADS  Google Scholar 

  29. Ch.-H. Lai, Yu.-H. Wang, Ch.-R. Chang, J.-Sh. Yang, and Y. D. Yao, Phys. Rev. B: Condens. Matter 64(1), 094420 (2001).

    Google Scholar 

  30. R. Fitzsimmons, P. Yashar, C. Leighton, I. K. Schuller, J. Nogués, C. F. Majkrzak, and A. Dura, Phys. Rev. Lett. 84(17), 3986 (2000).

    Article  ADS  Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1992; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  32. A. Hubert and R. Schäfer, Magnetic Domains (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  33. L. Neel, J. Phys. Radium 15, 225 (1954).

    MATH  Google Scholar 

  34. B. Stahl, E. Kankeleit, and R. Gellert, Phys. Rev. Lett. 84, 5632 (2000).

    Article  ADS  Google Scholar 

  35. S.-K. Kirn, and J. B. Kortright, Phys. Rev. Lett. 86, 1347 (2001).

    Article  ADS  Google Scholar 

  36. A. N. Bogdanov, and U. K. Rößsler, Phys. Rev. Lett. 87, 037203 (2001).

    Google Scholar 

  37. U. K. Rößsler, S. V. Bukhtiyarova, I. V. Zhikharev, and A. N. Bogdanov, J. Magn. Magn. Mater. 290–291, 772 (2005).

    Article  Google Scholar 

  38. V. G. Bar’yakhtar, A. N. Bogdanov, and D. A. Yablonskiĭ, Usp. Fiz. Nauk 156(1), 47 (1988) [Sov. Phys. Usp. 31, 810 (1988)].

    Google Scholar 

  39. K. I. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, Orientational Transition in Rare-Earth Magnetic Materials (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  40. I. S. Édel’man, Fiz. Met. Metalloved. 20(5), 683 (1965).

    Google Scholar 

  41. D. Melville, W. Khan, and S. Rinaldi, IEEE Trans. Magn. 12(6), 1012 (1976).

    Article  Google Scholar 

  42. A. I. Mitsek, N. P. Kolmakova, and D. I. Sirota, Fiz. Met. Metalloved. 38(1), 35 (1974).

    Google Scholar 

  43. A. I. Mitsek, Phys. Status Solidi B 59, 309 (1973).

    Google Scholar 

  44. A. I. Mitsek and V. N. Pushkar’, Magnetic Order in Real Crystals (Naukova Dumka, Kiev, 1978) [in Russian].

    Google Scholar 

  45. M. I. Kaganov and A. A. Yagubov, Fiz. Met. Metalloved. 36(6), 1127 (1973).

    Google Scholar 

  46. V. G. Bar’yakhtar, A. N. Bogdanov, and D. A. Yablonskiĭ, Fiz. Tverd. Tela (Leningrad) 29(1), 116 (1987) [Sov. Phys. Solid State 29 (1), 65 (1987)].

    Google Scholar 

  47. A. N. Bogdanov, and I. Ya. Granovskiĭ, Fiz. Tverd. Tela (Leningrad) 29(10), 2913 (1987) [Sov. Phys. Solid State 29 (10), 1674 (1987)].

    Google Scholar 

  48. C.-R. Chang, and D. R. Fredkin, J. Appl. Phys. 63(8), 3435 (1988).

    Article  ADS  Google Scholar 

  49. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A 240, 559 (1948).

    ADS  Google Scholar 

  50. E. J. Torok, H. N. Oredson, and A. L. Olson, J. Appl. Phys. 35(12), 3469 (1964).

    Article  Google Scholar 

  51. G. Bertotti, Hysteresis in Magnetism (Academic, New York, 1998).

    Google Scholar 

  52. V. G. Bar’yakhtar, A. N. Bogdanov, and D. A. Yablonskiĭ, Fiz. Nizk. Temp. (Kiev) 12(1), 43 (1986) [Sov. J. Low Temp. Phys. 12 (1), 24 (1986)].

    Google Scholar 

  53. A. Hubert, Theorie der Domanenwande in geordneten Medien (Springer-Verlag, Heidelberg, 1974; Mir, Moscow, 1977).

    Google Scholar 

  54. C. H. Lai, Phys. Rev. B: Condens. Matter 64, 094420 (2001).

    Google Scholar 

  55. Y. T. Milleva, J. R. Cullen, and H. P. Oepen, J. Appl. Phys. 83(11), 6500 (1998).

    Article  ADS  Google Scholar 

  56. Ch.-R. Chang, J.-Sh. Yang, J. C. A. Huang Lai, and C. H. Lai, J. Phys. Chem. Solids 62, 1737 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.E. Dragunov, S.V. Bukhtiyarova, I.V. Zhikharev, A.N. Bogdanov, U.K. Rößler, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 8, pp. 1504–1514.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragunov, I.E., Bukhtiyarova, S.V., Zhikharev, I.V. et al. Phase transitions and multidomain states in magnetic nanostructures with competing anisotropies. Phys. Solid State 48, 1591–1601 (2006). https://doi.org/10.1134/S1063783406080270

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406080270

PACS numbers

Navigation