Skip to main content
Log in

Calculation of Lattice Thermal Conductivity for Si Fishbone Nanowire Using Modified Callaway Model

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Semiconductor nanowires have low lattice thermal conductivity compared to the bulk materials, which is significant for developing thermoelectric. Lattice thermal conductivity of Si fishbone nanowires (NWs) was found for diameters of 65, 88, and 122 nm. For this purpose, the simulations were carried out using a modified Callaway model. Both longitudinal and transverse modes were taken into account in the model, which had a significant influence on some physical parameters, such as Debye temperature and group velocity of the semiconductor. The results showed that the model could fit the experimental data because different scattering parameters exhibited their effect in the temperature range. The modified Callaway model provides phonon scattering by boundary scattering, so by reducing the NW diameter the lattice thermal conductivity is diminished for the entire temperature range. Additionally, some intrinsic characteristics of the samples, including Grüneisen parameters, impurity, dislocation, and electron concentration were found throughout the calculation process, which practically hard to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. Pinto, S. Rezvani, L. Favre, I. Berbezier, M. Fretto, and L. Boarino, Appl. Phys. Lett. 109, 123101 (2016).

    Article  ADS  Google Scholar 

  2. T. Akiyama, K. Nakamura, and T. Ito, Nanotechnology 30, 234002 (2019).

    Article  ADS  Google Scholar 

  3. I. Ilkiv, D. Kirilenko, K. Kotlyar, and A. Bouravleuv, Nanotechnology 31, 055701 (2019).

    Article  ADS  Google Scholar 

  4. H. Qadr, Atom Indonesia 46, 47 (2020).

    Article  Google Scholar 

  5. H. M. Qadr, Ann. Univ. Craiova, Phys. 29, 68 (2019).

    Google Scholar 

  6. H. M. Qadr, Ann. Dunarea Jos Univ. Galati, Fascicle IX: Metall. Mater. Sci. 43, 13 (2020).

  7. H. M. Qadr, Eur. J. Mater. Sci. Eng. 5, 109 (2020).

    Google Scholar 

  8. G. G. Pethuraja, H. Efstathiadis, C. Rouse, M. V. Rane-Fondacaro, A. K. Sood, and P. Haldar, in Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, 2012, p. 001911.

  9. Y. Zhang, J. Materiomics 2, 237 (2016).

  10. Y. Xiao and L.-D. Zhao, Science (Washington, DC, U. S.) 367, 1196 (2020).

    Article  ADS  Google Scholar 

  11. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature (London, U.K.) 449 (7164), 885 (2007).

    Article  ADS  Google Scholar 

  12. A. Nazarov, F. Balestra, V. Kilchytska, and D. Flandre, Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting (Springer, New York, 2014).

    Book  Google Scholar 

  13. X. Lü and J. Chu, J. Appl. Phys. 100, 014305 (2006).

    Article  ADS  Google Scholar 

  14. Z. Wang, Z. Ni, R. Zhao, M. Chen, K. Bi, and Y. Chen, Phys. B (Amsterdam, Neth.) 406, 2515 (2011).

  15. R. Saini and A. R. Chauhan, AIP Conf. Proc., 130025 (2020).

  16. D. Q. Tran, N. Blumenschein, A. Mock, P. Sukkaew, H. Zhang, J. F. Muth, T. Paskova, P. P. Paskov, and V. Darakchieva, Phys. B (Amsterdam, Neth.) 579, 411810 (2020).

  17. D. Morelli, J. Heremans, and G. Slack, Phys. Rev. B 66, 195304 (2002).

    Article  ADS  Google Scholar 

  18. M. Omar and H. Taha, Sadhana 35, 177 (2010).

    Article  Google Scholar 

  19. I. N. Qader, B. J. Abdullah, and H. H. Karim, Euras. J. Sci. Eng. 3, 9 (2017).

    Google Scholar 

  20. I. N. Qader and M. Omar, Bull. Mater. Sci. 40, 599 (2017).

    Article  Google Scholar 

  21. H. H. Karim and M. Omar, Bull. Mater. Sci. 43, 54 (2020).

    Article  Google Scholar 

  22. I. N. Qader, B. J. Abdullah, and M. S. Omar, Aksaray Univ. J. Sci. Eng. 4, 30 (2020).

    Google Scholar 

  23. S. Mamand, M. Omar, and A. Muhammed, Adv. Mater. Lett. 3, 449 (2012).

    Article  Google Scholar 

  24. I. N. Qader, B. J. Abdullah, M. A. Hassan, and P. H. Mahmood, Euras. J. Sci. Eng. 4, 55 (2019).

    Google Scholar 

  25. P. Klemens, Proc. Phys. Soc., Sect. A 68, 1113 (1955).

    Google Scholar 

  26. J. Vandersande, Phys. Rev. B 15, 2355 (1977).

    Article  ADS  Google Scholar 

  27. X. Zhu, X. Zou, B. Liang, and J. Cheng, J. Appl. Phys. 108, 124909 (2010).

    Article  ADS  Google Scholar 

  28. J. Zou and A. Balandin, J. Appl. Phys. 89, 2932 (2001).

    Article  ADS  Google Scholar 

  29. B. J. Abdullah, Q. Jiang, and M. S. Omar, Bull. Mater. Sci. 39, 1295 (2016).

    Article  Google Scholar 

  30. M. Omar, Int. J. Thermophys. 37, 11 (2016).

    Article  ADS  Google Scholar 

  31. Q. Jiang and C. Yang, Curr. Nanosci. 4, 179 (2008).

    Article  ADS  Google Scholar 

  32. M. Omar and H. Taha, Phys. B (Amsterdam, Neth.) 404, 5203 (2009).

  33. S. Lai, J. Guo, V. Petrova, G. Ramanath, and L. Allen, Phys. Rev. Lett. 77, 99 (1996).

    Article  ADS  Google Scholar 

  34. T. B. David, Y. Lereah, G. Deutscher, R. Kofman, and P. Cheyssac, Philos. Mag. A 71, 1135 (1995).

    Article  ADS  Google Scholar 

  35. G. Krausch, T. Detzel, H. Bielefeldt, R. Fink, B. Luck-scheiter, R. Platzer, U. Wöhrmann, and G. Schatz, Appl. Phys. A 53, 324 (1991).

    Article  ADS  Google Scholar 

  36. M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, Phys. Rev. B 62, 10548 (2000).

    Article  ADS  Google Scholar 

  37. J. E. Callanan, G. Hope, R. D. Weir, and E. F. Westrum, Jr., J. Chem. Thermodyn. 24, 627 (1992).

  38. J. F. Archilla, S. M. Coelho, F. D. Auret, C. Nyamhere, V. I. Dubinko, and V. Hizhnyakov, Springer Ser. Mater. Sci. 221, 343 (2015).

    Google Scholar 

  39. A. E. Roslee, S. K. Muzakir, J. Ismail, M. M. Yusoff, and R. Jose, Phys. Chem. Chem. Phys. 19, 408 (2017).

    Article  Google Scholar 

  40. S. Mamand, M. Omar, and A. Muhammad, Mater. Res. Bull. 47, 1264 (2012).

    Article  Google Scholar 

  41. V. Pudalov, M. Gershenson, H. Kojima, N. Butch, E. Dizhur, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett. 88, 196404 (2002).

    Article  ADS  Google Scholar 

  42. J. Maire, R. Anufriev, T. Hori, J. Shiomi, S. Volz, and M. Nomura, Sci. Rep. 8, 1 (2018).

    Google Scholar 

  43. J. Lim, K. Hippalgaonkar, S. C. Andrews, A. Majumdar, and P. Yang, Nano Lett. 12, 2475 (2012).

    Article  ADS  Google Scholar 

Download references

FUNDING

This work has been supported by University of Raparin under Research Projects (project no. 1920-29-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Qadr.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qader, I.N., Qadr, H.M. & Ali, P.H. Calculation of Lattice Thermal Conductivity for Si Fishbone Nanowire Using Modified Callaway Model. Semiconductors 55, 960–967 (2021). https://doi.org/10.1134/S1063782621070137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621070137

Keywords:

Navigation